Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201756

RESUMEN

Thiosemicarbazones and their metal complexes have been studied for their biological activities against bacteria, cancer cells and protozoa. Short-term in vitro treatment with one gold (III) complex (C3) and its salicyl-thiosemicarbazone ligand (C4) selectively inhibited proliferation of T. gondii. Transmission Electron Microscopy (TEM) detected transient structural alterations in the parasitophorous vacuole membrane and the tachyzoite cytoplasm, but the mitochondrial membrane potential appeared unaffected by these compounds. Proteins potentially interacting with C3 and C4 were identified using differential affinity chromatography coupled with mass spectrometry (DAC-MS). Moreover, long-term in vitro treatment was performed to investigate parasitostatic or parasiticidal activity of the compounds. DAC-MS identified 50 ribosomal proteins binding both compounds, and continuous drug treatments for up to 6 days caused the loss of efficacy. Parasite tolerance to both compounds was, however, rapidly lost in their absence and regained shortly after re-exposure. Proteome analyses of six T. gondii ME49 clones adapted to C3 and C4 compared to the non-adapted wildtype revealed overexpression of ribosomal proteins, of two transmembrane proteins involved in exocytosis and of an alpha/beta hydrolase fold domain-containing protein. Results suggest that C3 and C4 may interfere with protein biosynthesis and that adaptation may be associated with the upregulated expression of tachyzoite transmembrane proteins and transporters, suggesting that the in vitro drug tolerance in T. gondii might be due to reversible, non-drug specific stress-responses mediated by phenotypic plasticity.


Asunto(s)
Proteínas Ribosómicas , Tiosemicarbazonas , Toxoplasma , Toxoplasma/efectos de los fármacos , Toxoplasma/metabolismo , Tiosemicarbazonas/farmacología , Proteínas Ribosómicas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Adaptación Fisiológica/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Regulación hacia Arriba/efectos de los fármacos , Humanos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Animales
2.
Exp Parasitol ; 255: 108655, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981259

RESUMEN

In previous studies, the artemisinin derivatives artemisone, its pro-drug artemiside and the bumped-kinase inhibitor BKI-1748 were effective against T. gondii via different modes of action. This suggests that they may act synergistically resulting in improved efficacies in vitro and in vivo. To test this hypothesis, the compounds were applied alone and in combination to T. gondii infected human fibroblast host cells in order to determine their inhibition constants and effects on cellular ultrastructure. In addition, the efficacy of either single- or combined treatments were assessed in an acute TgShSp1-oocyst infection model based on CD1 outbred mice. Whereas the IC50 of the compounds in combination (42 nM) was close to the IC50 of BKI-1748 alone (46 nM) and half of the IC50 of artemisone alone (92 nM), the IC90 of the combination was half of the values found with the single compounds (138 nM vs. ca. 270 nM). Another indication for synergistic effects in vitro were distinct alterations of the cellular ultrastructure of tachyzoites observed in combination, but not with the single compounds. These promising results could not be reproduced in vivo. There was no decrease in number of T. gondii positive brains by either treatment. However, the levels of infection in these brains, i. e. the number of tachyzoites, was significantly decreased upon BKI-1748 treatment alone, and the combination with artemiside did not produce any further decrease. The treatment with artemiside alone had no significant effects. A vertical transmission model could not be established since artemiside strongly interfered with pregnancy and caused abortion. These results show that is difficult to extrapolate from promising in vitro results to the situation in vivo.


Asunto(s)
Antineoplásicos , Artemisininas , Toxoplasma , Toxoplasmosis , Embarazo , Femenino , Ratones , Humanos , Animales , Toxoplasmosis/tratamiento farmacológico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Transmisión Vertical de Enfermedad Infecciosa , Antineoplásicos/farmacología
3.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445632

RESUMEN

In T. gondii, as well as in other model organisms, gene knock-out using CRISPR-Cas9 is a suitable tool to identify the role of specific genes. The general consensus implies that only the gene of interest is affected by the knock-out. Is this really the case? In a previous study, we generated knock-out (KO) clones of TgRH88_077450 (SRS29B; SAG1) which differed in the numbers of the integrated dihydrofolate-reductase-thymidylate-synthase (MDHFR-TS) drug-selectable marker. Clones 18 and 33 had a single insertion of MDHFR-TS within SRS29B. Clone 6 was disrupted by the insertion of a short unrelated DNA-sequence, but the marker was integrated elsewhere. In clone 30, the marker was inserted into SRS29B, and several other MDHFR-TS copies were found in the genome. KO and wild-type (WT) tachyzoites had similar shapes, dimensions, and vitality. This prompted us to investigate the impact of genetic engineering on the overall proteome patterns of the four clones as compared to the respective WT. Comparative shotgun proteomics of the five strains was performed. Overall, 3236 proteins were identified. Principal component analysis of the proteomes revealed five distinct clusters corresponding to the five strains by both iTop3 and iLFQ algorithms. Detailed analysis of the differentially expressed proteins revealed that the target of the KO, srs29B, was lacking in all KO clones. In addition to this protein, 20 other proteins were differentially expressed between KO clones and WT or between different KO clones. The protein exhibiting the highest variation between the five strains was srs36D encoded by TgRH_016110. The deregulated expression of SRS36D was further validated by quantitative PCR. Moreover, the transcript levels of three other selected SRS genes, namely SRS36B, SRS46, and SRS57, exhibited significant differences between individual strains. These results indicate that knocking out a given gene may affect the expression of other genes. Therefore, care must be taken when specific phenotypes are regarded as a direct consequence of the KO of a given gene.


Asunto(s)
Toxoplasma , Toxoplasma/genética , Proteómica/métodos , Secuencia de Bases , Técnicas de Inactivación de Genes , Proteínas Protozoarias/genética , Proteínas Protozoarias/análisis , Células Clonales
4.
Adv Parasitol ; 124: 91-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38754928

RESUMEN

Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.


Asunto(s)
Coccidiosis , Neospora , Vacunas Antiprotozoos , Animales , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Coccidiosis/parasitología , Coccidiosis/tratamiento farmacológico , Coccidiosis/inmunología , Neospora/inmunología , Vacunas Antiprotozoos/inmunología , Bovinos , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/parasitología , Desarrollo de Vacunas
5.
Front Cell Infect Microbiol ; 14: 1419209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975328

RESUMEN

As for many other organisms, CRISPR-Cas9 mediated genetic modification has gained increasing importance for the identification of vaccine candidates and drug targets in Neospora caninum, an apicomplexan parasite causing abortion in cattle and neuromuscular disease in dogs. A widely used approach for generating knock-out (KO) strains devoid of virulence factors is the integration of a drug selectable marker such as mutated dihydrofolate reductase-thymidylate synthase (mdhfr-ts) into the target gene, thus preventing the synthesis of respective protein and mediating resistance to pyrimethamine. However, CRISPR-Cas9 mutagenesis is not free of off-target effects, which can lead to integration of multiple mdhfr-ts copies into other sites of the genome. To determine the number of integrated mdhfr-ts in N. caninum, a duplex quantitative TaqMan PCR was developed. For this purpose, primers were designed that amplifies a 106 bp fragment from wild-type (WT) parasites corresponding to the single copy wtdhfrs-ts gene, as well as the mutated mdhfrs-ts present in KO parasites that confers resistance and were used simultaneously with primers amplifying the diagnostic NC5 gene. Thus, the dhfr-ts to NC5 ratio should be approximately 1 in WT parasites, while in KO parasites with a single integrated mdhrf-ts gene this ratio is doubled, and in case of multiple integration events even higher. This approach was applied to the Neospora KO strains NcΔGRA7 and NcΔROP40. For NcΔGRA7, the number of tachyzoites determined by dhfr-ts quantification was twice the number of tachyzoites determined by NC5 quantification, thus indicating that only one mdhfr-ts copy was integrated. The results obtained with the NcΔROP40 strain, however, showed that the number of dhfr-ts copies per genome was substantially higher, indicating that at least three copies of the selectable mdhfr-ts marker were integrated into the genomic DNA during gene editing by CRISPR-Cas9. This duplex TaqMan-qPCR provides a reliable and easy-to-use tool for assessing CRISPR-Cas9 mediated mutagenesis in WT N. caninum strains.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Neospora , Tetrahidrofolato Deshidrogenasa , Timidilato Sintasa , Tetrahidrofolato Deshidrogenasa/genética , Neospora/genética , Timidilato Sintasa/genética , Animales , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Resistencia a Medicamentos/genética , Edición Génica/métodos , Coccidiosis/parasitología , Complejos Multienzimáticos
6.
Int J Parasitol Drugs Drug Resist ; 25: 100553, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917582

RESUMEN

Toxoplasma gondii and Neospora caninum are major worldwide morbidity-causing pathogens. Bumped kinase inhibitors (BKIs) are a compound class that has been optimized to target the apicomplexan calcium-dependent protein kinase 1 (CDPK1) - and several members of this class have proven to be safe and highly active in vitro and in vivo. BKI-1708 is based on a 5-aminopyrazole-4-carboxamide scaffold, and exhibited in vitro IC50 values of 120 nM for T. gondii and 480 nM for N. caninum ß-galactosidase expressing strains, and did not affect human foreskin fibroblast (HFF) viability at concentrations up to 25 µM. Electron microscopy established that exposure of tachyzoite-infected fibroblasts to 2.5 µM BKI-1708 in vitro induced the formation of multinucleated schizont-like complexes (MNCs), characterized by continued nuclear division and harboring newly formed intracellular zoites that lack the outer plasma membrane. These zoites were unable to finalize cytokinesis to form infective tachyzoites. BKI-1708 did not affect zebrafish (Danio rerio) embryo development during the first 96 h following egg hatching at concentrations up to 2 µM. Treatments of mice with BKI-1708 at 20 mg/kg/day during five consecutive days resulted in drug plasma levels ranging from 0.14 to 4.95 µM. In vivo efficacy of BKI-1708 was evaluated by oral application of 20 mg/kg/day from day 9-13 of pregnancy in mice experimentally infected with N. caninum (NcSpain-7) tachyzoites or T. gondii (TgShSp1) oocysts. This resulted in significantly decreased cerebral parasite loads and reduced vertical transmission in both models without drug-induced pregnancy interference.


Asunto(s)
Coccidiosis , Fibroblastos , Neospora , Pirazoles , Toxoplasma , Animales , Neospora/efectos de los fármacos , Toxoplasma/efectos de los fármacos , Ratones , Coccidiosis/tratamiento farmacológico , Coccidiosis/parasitología , Pirazoles/farmacología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/parasitología , Humanos , Antiprotozoarios/farmacología , Concentración 50 Inhibidora , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología , Modelos Animales de Enfermedad , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas
7.
Int J Parasitol Drugs Drug Resist ; 25: 100544, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38703737

RESUMEN

Organometallic compounds, including Ruthenium complexes, have been widely developed as anti-cancer chemotherapeutics, but have also attracted much interest as potential anti-parasitic drugs. Recently hybrid drugs composed of organometallic Ruthenium moieties that were complexed to different antimicrobial agents were synthesized. One of these compounds, a trithiolato-diRuthenium complex (RU) conjugated to sulfadoxine (SDX), inhibited proliferation of Toxoplasma gondii tachyzoites grown in human foreskin fibroblast (HFF) monolayers with an IC50 < 150 nM, while SDX and the non-modified RU complex applied either individually or as an equimolar mixture were much less potent. In addition, conjugation of SDX to RU lead to decreased HFF cytotoxicity. RU-SDX did not impair the in vitro proliferation of murine splenocytes at concentrations ranging from 0.1 to 0.5 µM but had an impact at 2 µM, and induced zebrafish embryotoxicity at 20 µM, but not at 2 or 0.2 µM. RU-SDX acted parasitostatic but not parasiticidal, and induced transient ultrastructural changes in the mitochondrial matrix of tachyzoites early during treatment. While other compounds that target the mitochondrion such as the uncouplers FCCP and CCCP and another trithiolato-Ruthenium complex conjugated to adenine affected the mitochondrial membrane potential, no such effect was detected for RU-SDX. Evaluation of the in vivo efficacy of RU-SDX in a murine T. gondii oocyst infection model comprised of non-pregnant outbred CD1 mice showed no effects on the cerebral parasite burden, but reduced parasite load in the eyes and in heart tissue.


Asunto(s)
Toxoplasma , Pez Cebra , Toxoplasma/efectos de los fármacos , Animales , Ratones , Humanos , Fibroblastos/efectos de los fármacos , Fibroblastos/parasitología , Rutenio/química , Rutenio/farmacología , Toxoplasmosis/tratamiento farmacológico , Toxoplasmosis/parasitología , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Antiprotozoarios/química , Femenino , Concentración 50 Inhibidora
8.
Vaccines (Basel) ; 11(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36680001

RESUMEN

Neospora caninum is an apicomplexan parasite that causes abortion and stillbirth in cattle. We employed the pregnant neosporosis mouse model to investigate the efficacy of a modified version of the attenuated Listeria monocytogenes vaccine vector Lm3Dx_NcSAG1, which expresses the major N. caninum surface antigen SAG1. Multivalent vaccines were generated by the insertion of gra7 and/or rop2 genes into Lm3Dx_NcSAG1, resulting in the double mutants, Lm3Dx_NcSAG1_NcGRA7 and Lm3Dx_NcSAG1_NcROP2, and the triple mutant, Lm3Dx_NcSAG1_NcGRA7_NcROP2. Six experimental groups of female BALB/c mice were inoculated intramuscularly three times at two-week intervals with 1 × 107 CFU of the respective vaccine strains. Seven days post-mating, mice were challenged by the subcutaneous injection of 1 × 105N. caninum NcSpain-7 tachyzoites. Non-pregnant mice, dams and their offspring were observed daily until day 25 post-partum. Immunization with Lm3Dx_NcSAG1 and Lm3Dx_NcSAG1_NcGRA7_NcROP2 resulted in 70% postnatal pup survival, whereas only 50% and 58% of pups survived in the double mutant-vaccinated groups. Almost all pups had died at the end of the experiment in the infection control. The triple mutant was the most promising vaccine candidate, providing the highest rate of protection against vertical transmission (65%) and CNS infection. Overall, integrating multiple antigens into Lm3Dx_SAG1 resulted in lower vertical transmission and enhanced protection against cerebral infection in dams and in non-pregnant mice.

9.
Pathogens ; 12(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36986369

RESUMEN

The effects of decoquinate (DCQ) and three O-quinoline-carbamate-derivatives were investigated using human foreskin fibroblasts (HFF) infected with Neospora caninum tachyzoites. These compounds exhibited half-maximal proliferation inhibition (IC50s) from 1.7 (RMB060) to 60 nM (RMB055). Conversely, when applied at 5 (DCQ, RMB054) or 10µM (RMB055, RMB060), HFF viability was not affected. Treatments of infected cell cultures at 0.5µM altered the ultrastructure of the parasite mitochondrion and cytoplasm within 24 h, most pronounced for RMB060, and DCQ, RMB054 and RMB060 did not impair the viability of splenocytes from naïve mice. Long-term treatments of N. caninum-infected HFF monolayers with 0.5µM of each compound showed that only exposure to RMB060 over a period of six consecutive days had a parasiticidal effect, while the other compounds were not able to kill all tachyzoites in vitro. Thus, DCQ and RMB060 were comparatively assessed in the pregnant neosporosis mouse model. The oral application of these compounds suspended in corn oil at 10 mg/kg/day for 5 d resulted in a decreased fertility rate and litter size in the DCQ group, whereas reproductive parameters were not altered by RMB060 treatment. However, both compounds failed to protect mice from cerebral infection and did not prevent vertical transmission/pup mortality. Thus, despite the promising in vitro efficacy and safety characteristics of DCQ and DCQ-derivatives, proof of concept for activity against neosporosis could not be demonstrated in the murine model.

10.
PLoS One ; 17(9): e0271011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36112587

RESUMEN

Herein, we developed a single and a duplex TaqMan quantitative PCR (qPCR) for absolute quantification of copy numbers of integrated dihydrofolate reductase-thymidylate synthase (mdhfr-ts) drug selectable marker for pyrimethamine resistance in Toxoplasma gondii knockouts (KOs). The single TaqMan qPCR amplifies a 174 bp DNA fragment of the inserted mdhfr-ts and of the wild-type (WT) dhfr-ts (wtdhfr-ts) which is present as single copy gene in Toxoplasma and encodes a sensitive enzyme to pyrimethamine. Thus, the copy number of the dhfr-ts fragment in a given DNA quantity from KO parasites with a single site-specific integration should be twice the number of dhfr-ts copies recorded in the same DNA quantity from WT parasites. The duplex TaqMan qPCR allows simultaneous amplification of the 174 bp dhfr-ts fragment and the T. gondii 529-bp repeat element. Accordingly, for a WT DNA sample, the determined number of tachyzoites given by dhfr-ts amplification is equal to the number of tachyzoites determined by amplification of the Toxoplasma 529-bp, resulting thus in a ratio of 1. However, for a KO clone having a single site-specific integration of mdhfr-ts, the calculated ratio is 2. We then applied both approaches to test T. gondii RH mutants in which the major surface antigen (SAG1) was disrupted through insertion of mdhfr-ts using CRISPR-Cas9. Results from both assays were in correlation showing a high accuracy in detecting KOs with multiple integrated mdhfr-ts. Southern blot analyses using BsaBI and DraIII confirmed qPCRs results. Both TaqMan qPCRs are needed for reliable diagnostic of T. gondii KOs following CRISPR-Cas9-mediated mutagenesis, particularly with respect to off-target effects resulting from multiple insertions of mdhfr-ts. The principle of the duplex TaqMan qPCR is applicable for other selectable markers in Toxoplasma. TaqMan qPCR tools may contribute to more frequent use of WT Toxoplasma strains during functional genomics.


Asunto(s)
Timidilato Sintasa , Toxoplasma , Antígenos de Superficie/farmacología , Sistemas CRISPR-Cas/genética , ADN/farmacología , Variaciones en el Número de Copia de ADN , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa , Pirimetamina/farmacología , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA