Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Curr Top Microbiol Immunol ; 429: 63-101, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32936383

RESUMEN

We are all exposed to fungal organisms daily, and although many of these organisms are not harmful, billions of people a year contract a fungal infection. Most of these infections are not fatal and can be cleared by the host immune response. However, due to an increase in high-risk populations, the global fungal burden has increased, with more than 1.5 million deaths per year caused by invasive fungal infections. The fungal cell wall is an important surface for interacting with the host immune system as it contains pathogen-associated molecular patterns (PAMPs) which are detected as being foreign by the host pattern recognition receptors (PRRs). C-type lectin receptors are a group of PRRs that play a central role in the protection against invasive fungal infections. Following the recognition of fungal PAMPs, CLRs trigger various innate and adaptive immune responses. In this chapter, we specifically focus on C-type lectin receptors capable of activating downstream signaling pathways, resulting in protective antifungal immune responses. The current roles that these signaling CLRs play in protection against four of the most prevalent fungal infections affecting humans are reviewed. These include Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Micosis , Antifúngicos , Humanos , Inmunidad Innata , Lectinas Tipo C/genética , Receptores de Reconocimiento de Patrones
2.
Mediators Inflamm ; 2020: 4361043, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410852

RESUMEN

A hallmark of ulcerative colitis is the chronic colonic inflammation, which is the result of a dysregulated intestinal mucosal immune response. Epithelial barrier disruption which allows the entry of microorganisms eventually leads to more aggressive inflammation and potentially the removal of the colon. We have previously shown that the T helper- (Th-) type 2 cytokines, Interleukin- (IL-) 4 and IL-13, mediate CD4+ T cell- or B cell-driven inflammation in the oxazolone-induced mouse model of ulcerative colitis. In contrast, mice deficient in the shared receptor of IL-4 and IL-13, IL-4 receptor-alpha (IL-4Rα), on all cells develop an exacerbated disease phenotype. This suggests that a regulatory role of IL-4Rα is required to protect against severe colitis. However, the cell populations responsible for regulating the severity of disease onset through IL-4Rα in colitis are yet to be identified. By deleting IL-4Rα on specific cell subsets shown to play a role in mediating colitis, we determined their role in a loss of function approach. Our data demonstrated that the loss of IL-4Rα signalling on intestinal epithelial cells, smooth muscle cells, and macrophages/neutrophils had no effect on alleviating the pathology associated with colitis. These results suggest that IL-4/IL-13 signalling through IL-4Rα on nonhematopoietic intestinal epithelial or smooth muscle cells and hematopoietic macrophage/neutrophils has a redundant role in driving acute oxazolone colitis.


Asunto(s)
Colitis/metabolismo , Células Epiteliales/metabolismo , Macrófagos/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Linfocitos T CD4-Positivos/citología , Colitis/inducido químicamente , Colon/metabolismo , Eliminación de Gen , Inflamación , Interleucina-13/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Oxazolona , Transducción de Señal
3.
Cell Mol Immunol ; 21(2): 184-196, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37821620

RESUMEN

This review examines the intersection of the HIV and SARS-CoV-2 pandemics. People with HIV (PWH) are a heterogeneous group that differ in their degree of immune suppression, immune reconstitution, and viral control. While COVID-19 in those with well-controlled HIV infection poses no greater risk than that for HIV-uninfected individuals, people with advanced HIV disease are more vulnerable to poor COVID-19 outcomes. COVID-19 vaccines are effective and well tolerated in the majority of PWH, though reduced vaccine efficacy, breakthrough infections and faster waning of vaccine effectiveness have been demonstrated in PWH. This is likely a result of suboptimal humoral and cellular immune responses after vaccination. People with advanced HIV may also experience prolonged infection that may give rise to new epidemiologically significant variants, but initiation or resumption of antiretroviral therapy (ART) can effectively clear persistent infection. COVID-19 vaccine guidelines reflect these increased risks and recommend prioritization for vaccination and additional booster doses for PWH who are moderately to severely immunocompromised. We recommend continued research and monitoring of PWH with SARS-CoV-2 infection, especially in areas with a high HIV burden.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Inmunidad , Anticuerpos Antivirales
4.
PLoS Negl Trop Dis ; 18(1): e0011850, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38198478

RESUMEN

Emergomyces africanus is a recently identified thermally-dimorphic fungal pathogen that causes disseminated infection in people living with advanced HIV disease. Known as emergomycosis, this disseminated disease is associated with very high case fatality rates. Over the last decade, improved diagnostics and fungal identification in South Africa resulted in a dramatic increase in the number of reported cases. Although the true burden of disease is still unknown, emergomycosis is among the most frequently diagnosed dimorphic fungal infections in Southern Africa; and additional species in the genus have been identified on four continents. Little is known about the pathogenesis and the host's immune response to this emerging pathogen. Therefore, we established a murine model of pulmonary infection using a clinical isolate, E. africanus (CBS 136260). Both conidia and yeast forms caused pulmonary and disseminated infection in mice with organisms isolated in culture from lung, spleen, liver, and kidney. Wild-type C57BL/6 mice demonstrated a drop in body weight at two weeks post-infection, corresponding to a peak in fungal burden in the lung, spleen, liver, and kidney. An increase in pro-inflammatory cytokine production was detected in homogenized lung supernatants including IFN-γ, IL-1ß, IL-6, IL12-p40 and IL-17 at three- and four-weeks post-infection. No significant differences in TNF, IL-12p70 and IL-10 were observed in wild-type mice between one and four-weeks post-infection. Rag-1-deficient mice, lacking mature T-and B-cells, had an increased fungal burden associated with reduced IFN-γ production. Together our data support a protective T-helper type-1 immune response to E. africanus infection. This may provide a possible explanation for the susceptibility of only a subset of people living with advanced HIV disease despite hypothesized widespread environmental exposure. In summary, we have established a novel murine model of E. africanus disease providing critical insights into the host immune components required for eliminating the infection.


Asunto(s)
Infecciones por VIH , Micosis , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Micosis/microbiología
5.
Cell Host Microbe ; 32(2): 162-169.e3, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38211583

RESUMEN

Ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has given rise to recombinant Omicron lineages that dominate globally (XBB.1), as well as the emergence of hypermutated variants (BA.2.86). In this context, durable and cross-reactive T cell immune memory is critical for continued protection against severe COVID-19. We examined T cell responses to SARS-CoV-2 approximately 1.5 years since Omicron first emerged. We describe sustained CD4+ and CD8+ spike-specific T cell memory responses in healthcare workers in South Africa (n = 39) who were vaccinated and experienced at least one SARS-CoV-2 infection. Spike-specific T cells are highly cross-reactive with all Omicron variants tested, including BA.2.86. Abundant nucleocapsid and membrane-specific T cells are detectable in most participants. The bulk of SARS-CoV-2-specific T cell responses have an early-differentiated phenotype, explaining their persistent nature. Overall, hybrid immunity leads to the accumulation of spike and non-spike T cells evident 3.5 years after the start of the pandemic, with preserved recognition of highly mutated SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Células T de Memoria , Pandemias , Glicoproteína de la Espiga del Coronavirus/genética
6.
Open Biol ; 12(3): 210219, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35259948

RESUMEN

Exposure to fungal pathogens from the environment is inevitable and with the number of at-risk populations increasing, the prevalence of invasive fungal infection is on the rise. An interesting group of fungal organisms known as thermally dimorphic fungi predominantly infects immunocompromised individuals. These potential pathogens are intriguing in that they survive in the environment in one form, mycelial phase, but when entering the host, they are triggered by the change in temperature to switch to a new pathogenic form. Considering the growing prevalence of infection and the need for improved diagnostic and treatment approaches, studies identifying key components of fungal recognition and the innate immune response to these pathogens will significantly contribute to our understanding of disease progression. This review focuses on key endemic dimorphic fungal pathogens that significantly contribute to disease, including Histoplasma, Coccidioides and Talaromyces species. We briefly describe their prevalence, route of infection and clinical presentation. Importantly, we have reviewed the major fungal cell wall components of these dimorphic fungi, the host pattern recognition receptors responsible for recognition and important innate immune responses supporting adaptive immunity and fungal clearance or the failure thereof.


Asunto(s)
Hongos , Histoplasma , Hongos/fisiología , Histoplasma/fisiología , Humanos , Inmunidad Innata
7.
Front Immunol ; 12: 611673, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220793

RESUMEN

In tuberculosis, T cell-mediated immunity is extensively studied whilst B cells received limited attention in human and mice. Of interest, Mycobacterium tuberculosis (Mtb) does increase IL-4 Receptor-alpha (IL4Rα) expression in murine B cells. To better understand the role of IL4Rα signalling in B cells, we compared wild type mice with B cell-specific IL4Rα deficient mice (mb1creIL-4Rα-/lox mice). Chronic Mtb aerosol infection in mb1creIL-4Rα-/lox mice reduced lung and spleen bacterial burdens, compared to littermate (IL-4Rα-/lox) control animals. Consequently, lung pathology, inflammation and inducible nitric oxide synthase (iNOS) expression were reduced in the lungs of mb1creIL-4Rα-/lox mice, which was also accompanied by increased lung IgA and decreased IgG1 levels. Furthermore, intratracheal adoptive transfer of wild-type B cells into B cell-specific IL4Rα deficient mice reversed the protective phenotype. Moreover, constitutively mCherry expressing Mtb showed decreased association with B cells from mb1creIL-4Rα-/lox mice ex vivo. In addition, supernatants from Mtb-exposed B cells of mb1creIL-4Rα-/lox mice also increased the ability of macrophages to produce nitric oxide, IL-1ß, IL-6 and TNF. Together, this demonstrates that IL-4-responsive B cells are detrimental during the chronic phase of tuberculosis in mice with perturbed antibody profiles, inflammatory cytokines and tnf and stat1 levels in the lungs.


Asunto(s)
Linfocitos B/inmunología , Inmunoglobulina A/metabolismo , Interleucina-4/metabolismo , Pulmón/metabolismo , Macrófagos/patología , Mycobacterium tuberculosis/fisiología , Tuberculosis/inmunología , Animales , Enfermedad Crónica , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Receptores de Superficie Celular/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA