RESUMEN
OBJECTIVE: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. METHODS: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. RESULTS: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. CONCLUSION: Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Núcleo Caudado , Niño , Humanos , Imagen por Resonancia MagnéticaRESUMEN
OBJECTIVE: Neuroimaging studies show structural alterations of various brain regions in children and adults with attention deficit hyperactivity disorder (ADHD), although nonreplications are frequent. The authors sought to identify cortical characteristics related to ADHD using large-scale studies. METHODS: Cortical thickness and surface area (based on the Desikan-Killiany atlas) were compared between case subjects with ADHD (N=2,246) and control subjects (N=1,934) for children, adolescents, and adults separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical measures, case subjects, unaffected siblings, and control subjects in the NeuroIMAGE study (N=506) were compared. Associations of the attention scale from the Child Behavior Checklist with cortical measures were determined in a pediatric population sample (Generation-R, N=2,707). RESULTS: In the ENIGMA-ADHD sample, lower surface area values were found in children with ADHD, mainly in frontal, cingulate, and temporal regions; the largest significant effect was for total surface area (Cohen's d=-0.21). Fusiform gyrus and temporal pole cortical thickness was also lower in children with ADHD. Neither surface area nor thickness differences were found in the adolescent or adult groups. Familial effects were seen for surface area in several regions. In an overlapping set of regions, surface area, but not thickness, was associated with attention problems in the Generation-R sample. CONCLUSIONS: Subtle differences in cortical surface area are widespread in children but not adolescents and adults with ADHD, confirming involvement of the frontal cortex and highlighting regions deserving further attention. Notably, the alterations behave like endophenotypes in families and are linked to ADHD symptoms in the population, extending evidence that ADHD behaves as a continuous trait in the population. Future longitudinal studies should clarify individual lifespan trajectories that lead to nonsignificant findings in adolescent and adult groups despite the presence of an ADHD diagnosis.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Adolescente , Adulto , Factores de Edad , Trastorno por Déficit de Atención con Hiperactividad/patología , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Estudios de Casos y Controles , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Niño , Preescolar , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Escalas de Valoración Psiquiátrica , Factores Sexuales , Adulto JovenRESUMEN
BACKGROUND: Neuroimaging studies have shown structural alterations in several brain regions in children and adults with attention deficit hyperactivity disorder (ADHD). Through the formation of the international ENIGMA ADHD Working Group, we aimed to address weaknesses of previous imaging studies and meta-analyses, namely inadequate sample size and methodological heterogeneity. We aimed to investigate whether there are structural differences in children and adults with ADHD compared with those without this diagnosis. METHODS: In this cross-sectional mega-analysis, we used the data from the international ENIGMA Working Group collaboration, which in the present analysis was frozen at Feb 8, 2015. Individual sites analysed structural T1-weighted MRI brain scans with harmonised protocols of individuals with ADHD compared with those who do not have this diagnosis. Our primary outcome was to assess case-control differences in subcortical structures and intracranial volume through pooling of all individual data from all cohorts in this collaboration. For this analysis, p values were significant at the false discovery rate corrected threshold of p=0·0156. FINDINGS: Our sample comprised 1713 participants with ADHD and 1529 controls from 23 sites with a median age of 14 years (range 4-63 years). The volumes of the accumbens (Cohen's d=-0·15), amygdala (d=-0·19), caudate (d=-0·11), hippocampus (d=-0·11), putamen (d=-0·14), and intracranial volume (d=-0·10) were smaller in individuals with ADHD compared with controls in the mega-analysis. There was no difference in volume size in the pallidum (p=0·95) and thalamus (p=0·39) between people with ADHD and controls. Exploratory lifespan modelling suggested a delay of maturation and a delay of degeneration, as effect sizes were highest in most subgroups of children (<15 years) versus adults (>21 years): in the accumbens (Cohen's d=-0·19 vs -0·10), amygdala (d=-0·18 vs -0·14), caudate (d=-0·13 vs -0·07), hippocampus (d=-0·12 vs -0·06), putamen (d=-0·18 vs -0·08), and intracranial volume (d=-0·14 vs 0·01). There was no difference between children and adults for the pallidum (p=0·79) or thalamus (p=0·89). Case-control differences in adults were non-significant (all p>0·03). Psychostimulant medication use (all p>0·15) or symptom scores (all p>0·02) did not influence results, nor did the presence of comorbid psychiatric disorders (all p>0·5). INTERPRETATION: With the largest dataset to date, we add new knowledge about bilateral amygdala, accumbens, and hippocampus reductions in ADHD. We extend the brain maturation delay theory for ADHD to include subcortical structures and refute medication effects on brain volume suggested by earlier meta-analyses. Lifespan analyses suggest that, in the absence of well powered longitudinal studies, the ENIGMA cross-sectional sample across six decades of ages provides a means to generate hypotheses about lifespan trajectories in brain phenotypes. FUNDING: National Institutes of Health.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/patología , Encéfalo/patología , Imagen por Resonancia Magnética , Adolescente , Adulto , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Encéfalo/fisiopatología , Estudios de Casos y Controles , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Modelos Lineales , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Neuroimagen , Adulto JovenRESUMEN
BACKGROUND: Tourette syndrome (TS) is a childhood-onset neurodevelopmental disorder and its impact on cognitive development needs further study. Evidence from neuropsychological, neuroimaging and electrophysiological studies suggests that the decline in tic severity and the ability to suppress tics relate to the development of self-regulatory functions in late childhood and adolescence. Hence, tasks measuring performance monitoring might provide insight into the regulation of tics in children with TS. METHOD: Twenty-five children with TS, including 14 with comorbid Attention-deficit/ hyperactivity disorder (ADHD), 39 children with ADHD and 35 typically developing children aged 8-12 years were tested with a modified Eriksen-Flanker task during a 34-channel electroencephalography (EEG) recording. Task performance, as well as stimulus-locked and response-locked event-related potentials (ERP) were analyzed and compared across groups. RESULTS: Participants did not differ in their behavioral performance. Children with TS showed higher amplitudes of an early P3 component of the stimulus-locked ERPs in ensemble averages and in separate trial outcomes, suggesting heightened orienting and/or attention during stimulus evaluation. In response-locked averages, children with TS had a slightly higher positive complex before the motor response, likely also reflecting a late P3. Groups did not differ in post-response components, particularly in the error-related negativity (ERN) and error-related positivity (Pe). CONCLUSIONS: These findings suggest that children with TS may employ additional attentional resources as a compensatory mechanism to maintain equal behavioral performance.