Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Genet Metab ; 136(4): 274-281, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35839600

RESUMEN

ALG9-CDG is a CDG-I defect within the group of Congenital Disorders of Glycosylation (CDG). We here describe the clinical symptoms of two new and unrelated ALG9-CDG patients, both carrying the novel homozygous missense variant c.1460 T > C (p.L487P) in the ALG9 gene which led to global developmental delay, psychomotor disability, facial dysmorphisms, brain and heart defects, hearing loss, hypotonia, as well as feeding problems. New clinical symptoms comprised West syndrome with hypsarrhythmia. Quantitative RT-PCR analysis revealed a significantly enhanced ALG9 mRNA transcript level, whereas the protein amount in fibroblasts was significantly reduced. This could be ascribed to a stronger degradation of the mutated ALG9 protein in patient fibroblasts. Lipid-linked oligosaccharide analysis showed an ALG9-CDG characteristic accumulation of Man6GlcNAc2-PP-dolichol and Man8GlcNAc2-PP-dolichol in patient cells. The clinical findings of our patients and of all previously published ALG9-CDG patients are brought together to further expand the knowledge about this rare N-glycosylation disorder. SYNOPSIS: Homozygosity for p.L487P in ALG9 causes protein degradation and leads to West syndrome.


Asunto(s)
Trastornos Congénitos de Glicosilación , Espasmos Infantiles , Trastornos Congénitos de Glicosilación/genética , Humanos , Lactante , Masculino , Manosiltransferasas/genética , Proteínas de la Membrana/genética , Proteolisis , Espasmos Infantiles/genética
2.
J Inherit Metab Dis ; 44(6): 1441-1452, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34389986

RESUMEN

Fucosylation is essential for intercellular and intracellular recognition, cell-cell interaction, fertilization, and inflammatory processes. Only five types of congenital disorders of glycosylation (CDG) related to an impaired fucosylation have been described to date: FUT8-CDG, FCSK-CDG, POFUT1-CDG SLC35C1-CDG, and the only recently described GFUS-CDG. This review summarizes the clinical findings of all hitherto known 25 patients affected with those defects with regard to their pathophysiology and genotype. In addition, we describe five new patients with novel variants in the SLC35C1 gene. Furthermore, we discuss the efficacy of fucose therapy approaches within the different defects.


Asunto(s)
Trastornos Congénitos de Glicosilación/tratamiento farmacológico , Trastornos Congénitos de Glicosilación/genética , Fucosa/uso terapéutico , Proteínas de Transporte de Monosacáridos/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Glicoproteínas , Glicosilación , Humanos , Lactante , Masculino , Resultado del Tratamiento , Adulto Joven
3.
Hum Mutat ; 40(7): 938-951, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067009

RESUMEN

ALG3-CDG is one of the very rare types of congenital disorder of glycosylation (CDG) caused by variants in the ER-mannosyltransferase ALG3. Here, we summarize the clinical, biochemical, and genetic data of four new ALG3-CDG patients, who were identified by a type I pattern of serum transferrin and the accumulation of Man5 GlcNAc2 -PP-dolichol in LLO analysis. Additional clinical symptoms observed in our patients comprise sensorineural hearing loss, right-descending aorta, obstructive cardiomyopathy, macroglossia, and muscular hypertonia. We add four new biochemically confirmed variants to the list of ALG3-CDG inducing variants: c.350G>C (p.R117P), c.1263G>A (p.W421*), c.1037A>G (p.N346S), and the intron variant c.296+4A>G. Furthermore, in Patient 1 an additional open-reading frame of 141 bp (AAGRP) in the coding region of ALG3 was identified. Additionally, we show that control cells synthesize, to a minor degree, a hybrid protein composed of the polypeptide AAGRP and ALG3 (AAGRP-ALG3), while in Patient 1 expression of this hybrid protein is significantly increased due to the homozygous variant c.160_196del (g.165C>T). By reviewing the literature and combining our findings with previously published data, we further expand the knowledge of this rare glycosylation defect.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Manosiltransferasas/genética , Mutación , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Animales , Células COS , Células Cultivadas , Preescolar , Chlorocebus aethiops , Femenino , Humanos , Lactante , Masculino , Sistemas de Lectura Abierta , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Polimorfismo de Nucleótido Simple
4.
Lab Anim ; 56(3): 270-278, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34551636

RESUMEN

In many human diseases, the molecular pathophysiological mechanisms are not understood, which makes the development and testing of new therapeutic approaches difficult. The generation and characterization of animal models such as mice, rats, fruit flies, worms or fish offers the possibility for in detail studies of a disease's development, its course and potential therapies in an organismal context, which considerably minimizes the risk of therapeutic side effects for patients. Nevertheless, due to the high numbers of experimental animals used in research worldwide, attempts to develop alternative test systems will help in reducing their count. In this regard, the cell culture system displays a suitable option due to its potential of delivering nearly unlimited material and the good opportunities for high-throughput studies such as drug testing. Here, we describe a quick and simple method to isolate and cultivate vital fibroblast-like cells from embryos and adults of two popular teleost model organisms, the Japanese rice fish medaka (Oryzias latipes) and the zebrafish (Danio rerio).


Asunto(s)
Oryzias , Animales , Biopsia , Fibroblastos , Humanos , Ratones , Ratas , Instrumentos Quirúrgicos , Pez Cebra
5.
EMBO Mol Med ; 13(9): e14332, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34468083

RESUMEN

Congenital disorders of glycosylation are a genetically and phenotypically heterogeneous family of diseases affecting the co- and posttranslational modification of proteins. Using exome sequencing, we detected biallelic variants in GFUS (NM_003313.4) c.[632G>A];[659C>T] (p.[Gly211Glu];[Ser220Leu]) in a patient presenting with global developmental delay, mild coarse facial features and faltering growth. GFUS encodes GDP-L-fucose synthase, the terminal enzyme in de novo synthesis of GDP-L-fucose, required for fucosylation of N- and O-glycans. We found reduced GFUS protein and decreased GDP-L-fucose levels leading to a general hypofucosylation determined in patient's glycoproteins in serum, leukocytes, thrombocytes and fibroblasts. Complementation of patient fibroblasts with wild-type GFUS cDNA restored fucosylation. Making use of the GDP-L-fucose salvage pathway, oral fucose supplementation normalized fucosylation of proteins within 4 weeks as measured in serum and leukocytes. During the follow-up of 19 months, a moderate improvement of growth was seen, as well as a clear improvement of cognitive skills as measured by the Kaufmann ABC and the Nijmegen Pediatric CDG Rating Scale. In conclusion, GFUS-CDG is a new glycosylation disorder for which oral L-fucose supplementation is promising.


Asunto(s)
Fucosa , Guanosina Difosfato Fucosa , Niño , Fibroblastos/metabolismo , Glicoproteínas , Glicosilación , Guanosina Difosfato Fucosa/metabolismo , Humanos
6.
Mol Genet Metab Rep ; 25: 100673, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33209585

RESUMEN

Variants in Phosphomannomutase 2 (PMM2) lead to PMM2-CDG, the most frequent congenital disorder of glycosylation (CDG). We here describe the disease course of a ten-month old patient who presented with the classical PMM2-CDG symptoms as cerebellar hypoplasia, retinitis pigmentosa, seizures, short stature, hepato- and splenomegaly, anaemia, recurrent vomiting and inverted mamillae. A severe form of tetralogy of Fallot was diagnosed and corrective surgery was performed at the age of 10 months. At the end of the cardiopulmonary bypass, a sudden oedematous reaction of the myocardium accompanied by biventricular pump failure was observed immediately after heparin antagonization with protamine sulfate. The patient died seven days after surgery, since myocardial function did not recover on ECMO support. We here describe the first patient carrying the homozygous variant g.18313A > T in the PMM2 gene (NG_009209.1) that either can lead to c.394A > T (p.I132F) or even loss of 100 bp due to exon 5 skipping (c.348_447del; p.G117Rfs*4) which is comparable to a null allele. Proliferation and doubling time of the patient's fibroblasts were affected. In addition, we show that the induction of cellular stress by elevating the cell culture temperature to 40 °C led to a decrease of the patients' PMM2 transcript as well as PMM2 protein levels and subsequently to a significant loss of residual activity. We assume that metabolic stressful processes occurring after cardiac surgery led to the drop of the patient's PMM activity below a life-sustaining niveau which paved the way for the fatal outcome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA