Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Virol ; 97(12): e0137623, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37991368

RESUMEN

IMPORTANCE: Rotavirus (RV) is an important zoonosis virus, which can cause severe diarrhea and extra-intestinal infection. To date, some proteins or carbohydrates have been shown to participate in the attachment or internalization of RV, including HGBAs, Hsc70, and integrins. This study attempted to indicate whether there were other proteins that would participate in the entry of RV; thus, the RV VP4-interacting proteins were identified by proximity labeling. After analysis and verification, it was found that VIM and ACTR2 could significantly promote the proliferation of RV in intestinal cells. Through further viral binding assays after knockdown, antibody blocking, and recombinant protein overexpression, it was revealed that both VIM and ACTR2 could promote RV replication.


Asunto(s)
Proteína 2 Relacionada con la Actina , Proteínas de la Cápside , Mapas de Interacción de Proteínas , Rotavirus , Vimentina , Animales , Humanos , Proteína 2 Relacionada con la Actina/genética , Proteína 2 Relacionada con la Actina/metabolismo , Proteínas de la Cápside/metabolismo , Intestinos/citología , Rotavirus/química , Rotavirus/metabolismo , Vimentina/genética , Vimentina/metabolismo , Internalización del Virus , Replicación Viral , Unión Proteica
2.
J Med Virol ; 95(10): e29160, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37822266

RESUMEN

Vaccination has proven effective against SARS-CoV-2 infection but vaccines were originally based on the wild type and emerging variants have led to a decrease in protective efficacy. There is an urgent need for broad-spectrum vaccine protection against emerging variants. A vaccine based on the Delta strain spike protein was created by optimization of vector, codon, and protein structure to produce a subunit immunogen (Delta-6P-S) containing six proline mutations, stable pre-fusion conformation, and with high expression in CHO-S cells. Immunogenicity and protective efficacy were evaluated in mice and golden hamsters using alum adjuvant. The Delta-6P-S recombinant protein induced strong immune responses in C57BL/6J mice and golden hamsters and sera had cross-neutralization activity and neutralized wild type and Beta, Delta, Omicron BA.1, BA.2, and BA.5 variant strains. Golden hamsters were immunized against Delta, Omicron BA.1, and BA.2 variants. Viral RNA detected from throat swabs, lungs and tracheas decreased significantly in vaccine-inoculated animals relative to alum-treated controls and no infectious viruses were detected in lungs and tracheas. Almost no pathological damage to lung tissue was found in vaccinated animals by contrast with those treated only with alum. The Delta-6P-S recombinant protein rapidly eliminated replicating virus in the upper and lower airways of golden hamsters and merits further investigation as a candidate anti-SARS-CoV-2 vaccine.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Ratones , Ratones Endogámicos C57BL , SARS-CoV-2/genética , COVID-19/prevención & control , Mesocricetus , Vacunas de Subunidad/genética , Proteínas Recombinantes/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
3.
Microb Pathog ; 173(Pt A): 105810, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183959

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) and Porcine circovirus (PCV) are two important pathogens, which caused respiratory disease in pigs. PRRSV and PCV2 had caused great economic losses to the pig industry. Pigs coinfection with PCV2 and PRRSV were common in the clinic, PCV2 antibodies can be detected in most of the pigs. PCV2d and HP-PRRSV(JXA1-like) were two major viruses circulating in the pigs in China. In this study, HP-PRRSV (JXA1-like) and PCV2d were used to coinfect and (or) sequential infect 5-week-old weaned PCV2-antibody positive pigs and the clinical indications, pathological, virus load, and specific antibodies of the challenged post-weaned piglets were evaluated. Thirty 5-week-old post-weaned pigs were divided into six groups infected with PBS, PCV2, PRRSV, PCV2-PRRSV, PRRSV-PCV2, and Co-PRRSV-PCV2 according to the PCV2 specific antibodies. Pigs infected with PRRSV can experience diarrhea, increased body temperature, weight loss, and even death. The pigs in the PRRSV infected group and PRRSV-PCV2 infected group showed severe clinical symptoms, high mortality, and low average daily gain. The main pathological changes were widening of the lung interstitium, lung adhesion, and so on. The PRRSV-PCV2 infected group showed high levels of TNF-α and IL-2. In conclusion, PRRSV and PRRSV-PCV2 sequential infected pigs showed most pathogenic signs, and PCV2-PRRSV sequential infected pigs showed less pathogenicity than pigs of PCV2 and PRRSV coinfection and PRRSV monoinfection from day 10-14, partially suppressing the cytokine storm produced by PRRSV.


Asunto(s)
Infecciones por Circoviridae , Coinfección , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Porcinos , Animales , Coinfección/veterinaria , Virulencia , Anticuerpos Antivirales
4.
Arch Virol ; 167(12): 2519-2528, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36083350

RESUMEN

The wide spread of coronavirus disease 2019 (COVID-19) has significantly threatened public health. Human herd immunity induced by vaccination is essential to fight the epidemic. Therefore, highly immunogenic and safe vaccines are necessary to control SARS-CoV-2, whose S protein is the antigenic determinant responsible for eliciting antibodies that prevent viral entry and fusion. In this study, we developed a SARS-CoV-2 DNA vaccine expressing the S protein, named pVAX-S-OP, which was optimized according to the human-origin codon preference and using polyinosinic-polycytidylic acid as an adjuvant. pVAX-S-OP induced specific antibodies and neutralizing antibodies in BALB/c and hACE2 transgenic mice. Furthermore, we observed 1.43-fold higher antibody titers in mice receiving pVAX-S-OP plus adjuvant than in those receiving pVAX-S-OP alone. Interferon gamma production in the pVAX-S-OP-immunized group was 1.58 times (CD3+CD4+IFN-gamma+) and 2.29 times (CD3+CD8+IFN-gamma+) lower than that in the pVAX-S-OP plus adjuvant group but higher than that in the control group. The pVAX-S-OP vaccine was also observed to stimulate a Th1-type immune response. When, hACE2 transgenic mice were challenged with SARS-CoV-2, qPCR detection of N and E genes showed that the viral RNA loads in pVAX-S-OP-immunized mice lung tissues were 104 times and 106 times lower than those of the PBS control group, which shows that the vaccine could reduce the amount of live virus in the lungs of hACE2 mice. In addition, pathological sections showed less lung damage in the pVAX-S-OP-immunized group. Taken together, our results demonstrated that pVAX-S-OP has significant immunogenicity, which provides support for developing SARS-CoV-2 DNA candidate vaccines.


Asunto(s)
COVID-19 , Vacunas de ADN , Animales , Humanos , Ratones , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Inmunidad Celular , Ratones Transgénicos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas de ADN/genética
5.
Microb Pathog ; 150: 104729, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33429053

RESUMEN

The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) cause a huge economic loss around the pig industry worldwide; the NADC30-like PRRSV have attracted much attention outbreaks in China in recent years. Recombination between PRRSV subtypes, point mutations, insertions and deletions that contribute to the emergence of new variants in the genome. In this study, the PRRSV-HB-16-China-2019 strain's full-length genomic sequence shares 93.0% nucleotide similarity to NADC30 PRRSV without any gene insertion. Compared with VR-2332, it has an NSP2 coding region that is different from NADC30, which has a discontinuous 206-aa (111-aa from position 323 to 433 and 95-aa from position 476 to 570) deletion. Compared with other NADC30-Like strains, it has a discontinuous 75-amino acid (75-aa from position 476 to 552) deletion, which was first reported. Notably, the strain, PRRSV-HB-16-China-2019, contained an addition a 1-aa deletion in ORF5 and a unique 3-nt deletion in 3'-UTR similar to NADC30, the strain is recombined between a NADC30-like strain and a vaccine strain named RespPRRS MLV(parental strain VR-2332). Our findings indicate that PRRSV-HB-16-China-2019 is a new NSP2-deletion NADC30-like strain with certain deletions and mutations. Our results show that the emergence of the new NADC30-like strain has increased the difficulty of PRRSV prevention in China.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , China , Variación Genética , Genoma Viral , Filogenia , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Recombinación Genética , Porcinos
6.
Virol J ; 18(1): 209, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674719

RESUMEN

BACKGROUND: Porcine vesicular disease is caused by the Seneca Valley virus (SVV), it is a novel Picornaviridae, which is prevalent in several countries. However, the pathogenicity of SVV on 5-6 week old pigs and the transmission routes of SVV remain unknown. METHODS: This research mainly focuses on the pathogenicity of the CH-GX-01-2019 strain and the possible vector of SVV. In this study, 5-6 week old pigs infected with SVV (CH-GX-01-2019) and its clinical symptoms (including rectal temperatures and other clinical symptoms) were monitored, qRT-PCR were used to detect the viremia and virus distribution. Neutralization antibody assay was set up during this research. Mosquitoes and Culicoides were collected from pigsties after pigs challenge with SVV, and SVV detection within mosquitoes and Culicoides was done via RT-PCR. RESULTS: The challenged pigs presented with low fevers and mild lethargy on 5-8 days post infection. The viremia lasted more than 14 days. SVV was detected in almost all tissues on the 14th day following the challenge, and it was significantly higher in the hoofs (vesicles) and lymph nodes in comparison with other tissues. Neutralizing antibodies were also detected and could persist for more than 28 days, in addition neutralizing antibody titers ranged from 1:128 to 1:512. Mosquitoes and Culicoides were collected from the pigsty environments following SVV infection. Although SVV was not detected in the mosquitoes, it was present in the Culicoides, however SVV could not be isolated from the positive Culicoides. CONCLUSIONS: Our work has enriched the knowledge relating to SVV pathogenicity and possible transmission routes, which may lay the foundation for further research into the prevention and control of this virus.


Asunto(s)
Ceratopogonidae , Infecciones por Picornaviridae , Picornaviridae , Enfermedades de los Porcinos , Animales , Granjas , Mosquitos Vectores , Infecciones por Picornaviridae/veterinaria , Porcinos , Virulencia
7.
Arch Virol ; 166(7): 1951-1959, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33987752

RESUMEN

A novel circovirus designated "porcine circovirus type 4" (PCV4) was recently reported in pigs with severe clinical disease in Hunan Province, China. Relatively little is known about the molecular epidemiology of this recently discovered virus. In order to assess the prevalence of PCV4 infection in pigs and to analyze its genomic characteristics, 1683 clinical samples were collected in Inner Mongolia, China, from 2016 to 2018. The overall infection rate of PCV4 was 1.6% (27/1683) at the sample level and 21.6% (11/51) at the farm level, with rates ranging from 3.2% (1/31) to 20.0% (6/30) on different PCV4-positive pig farms. In addition, the PCV4 infection rates at both the sample and farm level increased from 2016 to 2018. This also showed that PCV4 was present in pigs in 2016 in China and therefore did not arrive later than this date. Additionally, our findings showed that PCV4 infections had no association with PCV2 or PCV3 infections. We sequenced the complete genomes of three PCV4 strains and found that the PCV4 strains had a high degree of genetic stability but shared less than 80% sequence identity with other circoviruses. We identified six amino acid mutations in the Rep protein and seven in the Cap protein. Phylogenetic analysis based on Cap and Rep sequences confirmed that the PCV4 strains grouped in an independent branch. Our findings provide important information about the prevalence and genetic characteristics of PCV4 strains.


Asunto(s)
Infecciones por Circoviridae/epidemiología , Circovirus/genética , Enfermedades de los Porcinos/epidemiología , Animales , China/epidemiología , Infecciones por Circoviridae/virología , Granjas , Genoma Viral/genética , Genómica/métodos , Epidemiología Molecular/métodos , Filogenia , Prevalencia , Estudios Retrospectivos , Porcinos , Enfermedades de los Porcinos/virología
8.
Microb Pathog ; 140: 103941, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31862391

RESUMEN

The porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of porcine reproductive and respiratory syndrome (PRRS). Disease outbreaks caused by NADC30-like PRRSV strains were a bit prevalent in China in recent years. In the present study, two newly emerged PRRSV strains, which were designated as PRRSV-ZDXYL-China-2018-1 and PRRSV-ZDXYL-China-2018-2 strains were found from piglets' lung tissues in Northern China. The virus belongs to lineage 1 of the PRRSV genotype 2 and is closely related to US strains that possess the open reading frame (ORF5) restriction fragment length polymorphism (RFLP) 1-7-4. The two strains were identified from infected weaning piglet herds in Zhaodong City, Heilongjiang province of China. The complete genome of the PRRSV-ZDXYL-China-2018-1 and PRRSV-ZDXYL-China-2018-2 strains were 15093 nt and 15110 nt, and shared 96.7%-97.0% and 97.1%-97.4% similarities with the US identified, ISU10 and NADC34 strains respectively. Then the PRRSV-ZDXYL-China-2018-1 strain was successfully isolated from the clinical sample. Our results demonstrate, that the emergence of ORF5 RFLP 1-7-4-like PRRSVs in China, could pose a significant challenge to PRRSV epidemic prevention.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , China/epidemiología , Brotes de Enfermedades/veterinaria , Variación Genética , Genoma Viral , Pulmón/virología , Filogenia , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Porcinos , Secuenciación Completa del Genoma
9.
BMC Vet Res ; 14(1): 321, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367641

RESUMEN

BACKGROUND: First identified in the United States in 2016, porcine circovirus type 3 (PCV3) is a newly emerging porcine circovirus exhibiting a wide range of clinical syndromes, which may be associated with the pathogenicity observed in pigs. RESULTS: The aim of this study was to identify and characterize the full genome sequence of PCV3 strains circulating in Northeast China. Herein, 105 lung samples isolated from sick pigs in Northeast China during 2018 were analyzed for PCV3. Using PCR, the total PCV3-positive rate was 33.3% (35/105), with rates of 17.8% (8/45), 66.7% (10/15), and 37.8% (17/45) in Heilongjiang, Jilin, and Liaoning province, respectively. Additionally, our findings showed that PCV3-positive samples had a high rate of co-infection with PCV2, PPV6, and PPV7. To study the evolution of the PCV3 in Northeast China, we sequenced the entire genome of 13 strains of PCV3. The results of phylogenetic analyses revealed that PCV3 could be divided into two clades, PCV3a and PCV3b. Interestingly, a G deletion at position 1072 was found in the 1999 nt genome of PCV3-CN2018LN-4 (MH277118). The G deletion terminated replicase protein translation and induced a truncated replicase protein. CONCLUSION: These results contribute to the understanding of PCV3 molecular epidemiology and evolution in Northeast China. A new strain of PCV3 with truncated replicase protein was identified.


Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/genética , Enfermedades de los Porcinos/virología , Animales , China/epidemiología , Infecciones por Circoviridae/diagnóstico , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/virología , Coinfección/epidemiología , Coinfección/veterinaria , Coinfección/virología , Genoma Viral/genética , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Análisis de Secuencia de ADN/veterinaria , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/epidemiología
10.
Biologicals ; 44(4): 252-256, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27230301

RESUMEN

A novel triple reasserted H1N2 virus A/swine/Shanghai/1/2007 (SH07) was isolated from nasal swabs of weaned pig showing clinical symptoms of coughing and sneezing. To explore the virus characteristics, mice, chickens and pigs were selected for pathogenicity study. Pigs inoculated intranasally with 10(6) TCID50 SH07 showed clinical symptoms with coughing and sneezing, but no death. The virus nuclear acid was detected in many tissues using real-time PCR, which was mainly distributed in respiratory system particularly in the lungs. The virus was low-pathogenic to chickens with 10(6) TCID50 dose inoculation either via intramuscular or intranasal routes. However virus nuclear acid detection and virus isolation confirmed that the virus can also be found in nasal and rectum. When virus was inoculated into mice by intramuscular or intranasal routes we observed 100% and 80% lethality respectively. The third generation of samples passaged on MDCK cell were SIV positive in indirect immunofluorescence assay (IFA) using antiserum against H1N2 SIV. Furthermore, the lungs of mice showed obvious lesion with interstitial pneumonia. Data in our study suggest that SH07 is preferentially pathogenic to mammals rather than birds although it is a reasserting virus with the fragments from swine, human and avian origin.


Asunto(s)
Subtipo H1N2 del Virus de la Influenza A/inmunología , Gripe Aviar/inmunología , Infecciones por Orthomyxoviridae/inmunología , Enfermedades de los Porcinos/inmunología , Animales , Pollos , Perros , Especificidad del Huésped/inmunología , Humanos , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Pulmón/inmunología , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones , Microscopía Fluorescente , Cavidad Nasal/inmunología , Cavidad Nasal/virología , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Recto/inmunología , Recto/virología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos , Enfermedades de los Porcinos/virología , Virulencia/inmunología
11.
Viruses ; 15(3)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36992334

RESUMEN

Japanese encephalitis virus (JEV), which uses a mosquito primary vector and swine as a reservoir host, poses a significant risk to human and animal health. JEV can be detected in cattle, goats and dogs. A molecular epidemiological survey of JEV was conducted in 3105 mammals from five species, swine, fox, racoon dog, yak and goat, and 17,300 mosquitoes from 11 Chinese provinces. JEV was detected in pigs from Heilongjiang (12/328, 3.66%), Jilin (17/642, 2.65%), Shandong (14/832, 1.68%), Guangxi (8/278, 2.88%) and Inner Mongolia (9/952, 0.94%); in goats (1/51, 1.96%) from Tibet; and mosquitoes (6/131, 4.58%) from Yunnan. A total of 13 JEV envelope (E) gene sequences were amplified in pigs from Heilongjiang (5/13), Jilin (2/13) and Guangxi (6/13). Swine had the highest JEV infection rate of any animal species, and the highest infection rates were found in Heilongjiang. Phylogenetic analysis indicated that the predominant strain in Northern China was genotype I. Mutations were found at residues 76, 95, 123, 138, 244, 474 and 475 of E protein but all sequences had predicted glycosylation sites at 'N154. Three strains lacked the threonine 76 phosphorylation site from non-specific (unsp) and protein kinase G (PKG) site predictions; one lacked the threonine 186 phosphorylation site from protein kinase II (CKII) prediction; and one lacked the tyrosine 90 phosphorylation site from epidermal growth factor receptor (EGFR) prediction. The aim of the current study was to contribute to JEV prevention and control through the characterization of its molecular epidemiology and prediction of functional changes due to E-protein mutations.


Asunto(s)
Culicidae , Virus de la Encefalitis Japonesa (Especie) , Virus de la Encefalitis Japonesa (Subgrupo) , Encefalitis Japonesa , Bovinos , Animales , Humanos , Porcinos , Perros , Virus de la Encefalitis Japonesa (Especie)/genética , Filogenia , China/epidemiología , Genotipo , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/veterinaria , Treonina/genética , Mamíferos
12.
Emerg Microbes Infect ; 12(1): 2202269, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37038652

RESUMEN

Breakthrough infections by SARS-CoV-2 variants pose a global challenge to COVID-19 pandemic control, and the development of more effective vaccines of broad-spectrum protection is needed. In this study, we constructed pVAX1-based plasmids encoding receptor-binding domain (RBD) chimera of SARS-CoV-1 and SARS-CoV-2 variants, including pAD1002 (encoding RBDSARS/BA1), pAD1003 (encoding RBDSARS/Beta) and pAD131 (encoding RBDBA1/Beta). Plasmids pAD1002 and pAD131 were far more immunogenic than pAD1003 in terms of eliciting RBD-specific IgG when intramuscularly administered without electroporation. Furthermore, dissolvable microneedle array patches (MAP) greatly enhanced the immunogenicity of these DNA constructs in mice and rabbits. MAP laden with pAD1002 (MAP-1002) significantly outperformed inactivated SARS-CoV-2 virus vaccine in inducing RBD-specific IFN-γ+ effector and memory T cells, and generated T lymphocytes of different homing patterns compared to that induced by electroporated DNA in mice. In consistence with the high titer neutralization results of MAP-1002 antisera against SARS-CoV-2 pseudoviruses, MAP-1002 protected human ACE2-transgenic mice from Omicron BA.1 challenge. Collectively, MAP-based DNA constructs encoding chimeric RBDs of SARS-CoV-1 and SARS-CoV-2 variants, as represented by MAP-1002, are potential COVID-19 vaccine candidates worthy further translational study.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Vacunas de ADN , Animales , Humanos , Ratones , Conejos , Vacunas contra la COVID-19 , SARS-CoV-2 , Pandemias , ADN , Ratones Transgénicos , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus
13.
Res Vet Sci ; 152: 212-218, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35998397

RESUMEN

Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is the causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS), which has caused huge economic losses to the pig industry worldwide. PRRSV NADC34-Like PRRSV 2020-Acheng-1 strain, which caused high morbidity and high mortality were isolated from dead piglets (high-throughput sequencing to show that only PRRSV and TGEV) on a farm in northeastern China. The full-length genome sequence of 2020-Acheng-1 shares 95.6% nucleotide homology with NADC34 PRRSV without any gene insertion, but has a unique 17 amino acid (469aa to 486aa) deletion in Nsp2 compared with all NADC34-Like strains in NCBI and there are unique 100 amino acid deletions. In addition, difference degree of changes in signal peptide, trans-membrane region (TM), main neutralizing epitope (PNE), non-neutralizing epitope and N-glycosylation site were observed in GP5 of 2020-Acheng-1 and other PRRSV-2 strains, we only found a change in the fifteenth amino acid of signal peptide of in GP5 of 2020-Acheng-1 with NADC34 strains. Recombination analysis showed that 2020-Acheng-1 strain did not have any recombination events with representative PRRSV-2 strains in China. This study provided valuable evidence for understanding the role of NADC34-Like strain that impact on pathogenicity.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Filogenia , Aminoácidos , Señales de Clasificación de Proteína/genética , Epítopos , China/epidemiología , Variación Genética , Genoma Viral/genética
14.
Viruses ; 14(8)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36016401

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne virus. The emergence of CHIKV infection has raised global concern, and there is a growing need to develop safe and effective vaccines. Here, adenovirus 5 was used as the vaccine vector to construct recombinant adenoviruses expressing CHIKV E2, E1, and E2-6K-E1, respectively. And then the immunogenicity and protective efficiency against CHIKV were evaluated in BALB/c mice. Compared to the ad-wt control group, all three vaccines elicited significant humoral and cellar immune responses. The levels of neutralizing antibodies in the rAd-CHIKV-E2-6K-E1 and rAd-CHIKV-E2 groups both reached 1:256, which were 3.2 times higher than those in the rAd-CHIKV-E1 group. Furthermore, the levels of lymphocyte proliferation in rAd-CHIKV-E2-6K-E1 group were the highest. Besides, the concentrations of IFN-γ and IL-4 in mice immunized with rAd-CHIKV-E2-6K-E1 were 1.37 and 1.20 times higher than those in ad-wt immunized mice, respectively. After the challenge, mice in the rAd-CHIKV-E2-6K-E1 and rAd-CHIKV-E2 groups lost 2% of their body weight compared with 5% in the ad-wt control group. And low viral loads were detected in the heart, kidney, and blood of mice immunized with rAd-CHIKV-E2-6K-E1 and rAd-CHIKV-E2 at 3-5 dpc, which decreased by 0.4-0.7 orders of magnitude compared with the ad-wt control. Overall, these data suggest that the recombinant adenovirus is a potential candidate vaccine against CHIKV.


Asunto(s)
Infecciones por Adenoviridae , Vacunas contra el Adenovirus , Fiebre Chikungunya , Virus Chikungunya , Vacunas Virales , Adenoviridae/genética , Animales , Anticuerpos Antivirales , Fiebre Chikungunya/prevención & control , Virus Chikungunya/genética , Ratones , Mosquitos Vectores , Vacunas Sintéticas/genética , Proteínas del Envoltorio Viral , Vacunas Virales/genética
15.
Viruses ; 14(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35215764

RESUMEN

Porcine parvovirus (PPV) is the main pathogen of reproductive disorders. In recent years, a new type of porcine parvovirus has been discovered and named porcine parvovirus 2 to 7 (PPV2-PPV7), and it is associated with porcine circovirus type 2 in pigs. Codon usage patterns and their effects on the evolution and host adaptation of different PPV sub-types are still largely unknown. Here, we define six main sub-types based on the Bayesian method of structural proteins of each sub-type of PPV, including PPV2, PPV3, PPV4, PPV5, PPV6, and PPV7, which show different degrees of codon usage preferences. The effective number of codons (ENC) indicates that all PPV sub-types have low codon bias. According to the codon adaptation index (CAI), PPV3 and PPV7 have the highest similarity with the host, which is related to the main popular tendency of the host in the field; according to the frequency of optimal codons (FOP), PPV7 has the highest frequency of optimal codons, indicating the most frequently used codons in its genes; and according to the relative codon deoptimization index (RCDI), PPV3 has a higher degree. Therefore, it is determined that mutational stress has a certain impact on the codon usage preference of PPV genes, and natural selection plays a very decisive and dominant role in the codon usage pattern. Our research provides a new perspective on the evolution of porcine parvovirus (PPV) and may help provide a new method for future research on the origin, evolutionary model, and host adaptation of PPV.


Asunto(s)
Uso de Codones , Variación Genética , Adaptación al Huésped , Infecciones por Parvoviridae/virología , Parvovirus Porcino/genética , Enfermedades de los Porcinos/virología , Animales , Teorema de Bayes , Evolución Molecular , Genotipo , Mutación , Filogenia , Selección Genética , Porcinos
16.
Front Cell Infect Microbiol ; 12: 1016897, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275018

RESUMEN

The porcine reproductive and respiratory syndrome virus (PRRSV) is a threat to the health of pigs worldwide, but commercially available vaccines offer limited protection against PRRSV infection. It is necessary to develop a more effective DNA vaccine. The immunological effects of DNA vaccines with three adjuvants were examined in pigs (Susscrofa domestica) challenged with PRRSV. These DNA vaccines, which encoded PRRSV GP3 and GP5, were formulated with A1, A2, and A3. Serum specific and neutralizing antibodies, IL-4, IFN-γ, IL-2, IL-10, CD4+ and CD8+T-lymphocytes, health status, histopathology, and viral loads were determined. The results showed that the use of adjuvant A3 led to higher levels of neutralizing antibodies and a lower viral load in pigs compared to the other adjuvants. The neutralizing antibody titers of the pVAX-GP35+A1 and pVAX-GP35+A3 groups reached a peak of 1:19 at 35 dpi. The maximum concentration of IL-4 was 136.77 pg/mL in the pVAX-GP35+A3 group. At 35 dpi, the IFN-γ concentration in the pVAX-GP35+A1 group was 227.4 pg/mL. pVAX-GP35+A3 group shows the highest IL-2 and IL-10 expression to the peak of 597.6 pg/mL and 189.1 pg/mL, respectively. We found a formulation demonstrated beneficial immune outcomes. This study provides an alternative vaccine to protect pigs from PRRSV.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Vacunas de ADN , Vacunas Virales , Porcinos , Animales , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Interleucina-10/genética , Interleucina-4 , Interleucina-2/genética , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Adyuvantes Inmunológicos/farmacología , Recombinación Genética , Vacunas Virales/genética
17.
Front Microbiol ; 13: 1009610, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212868

RESUMEN

Getah virus (GETV) is a mosquito-borne, single-stranded, positive-sense RNA virus belonging to the genus Alphavirus of the family Togaviridae. Natural infections of GETV have been identified in a variety of vertebrate species, with pathogenicity mainly in swine, horses, bovines, and foxes. The increasing spectrum of infection and the characteristic causing abortions in pregnant animals pose a serious threat to public health and the livestock economy. Therefore, there is an urgent need to establish a method that can be used for epidemiological investigation in multiple animals. In this study, a real-time reverse transcription fluorescent quantitative PCR (RT-qPCR) method combined with plaque assay was established for GETV with specific primers designed for the highly conserved region of GETV Nsp1 gene. The results showed that after optimizing the condition of RT-qPCR reaction, the minimum detection limit of the assay established in this study was 7.73 PFU/mL, and there was a good linear relationship between viral load and Cq value with a correlation coefficient (R 2) of 0.998. Moreover, the method has good specificity, sensitivity, and repeatability. The established RT-qPCR is 100-fold more sensitive than the conventional RT-PCR. The best cutoff value for the method was determined to be 37.59 by receiver operating characteristic (ROC) curve analysis. The area under the curve (AUC) was 0.956. Meanwhile, we collected 2,847 serum specimens from swine, horses, bovines, sheep, and 17,080 mosquito specimens in Shandong Province in 2022. The positive detection rates by RT-qPCR were 1%, 1%, 0.2%, 0%, and 3%, respectively. In conclusion, the method was used for epidemiological investigation, which has extensive application prospects.

18.
Front Microbiol ; 13: 989183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36171749

RESUMEN

Thousands of people die each year from Japanese encephalitis (JE) caused by the Japanese encephalitis virus (JEV), probably due to exacerbation of the inflammatory response that impairs the course of the disease. Microglia are mononuclear phagocytic cells located within the parenchyma of the central nervous system; these play a key role in the innate immune response against JEV infections. However, the involvement of toll-like receptor 2 (TLR2) in the inflammatory response during the early stages of JEV infection in BV2 cells remains. Here, we evaluated protein profiles and determined the role of TLR2 in the inflammatory response of JEV-infected BV2 cells. High-depth tandem mass tags labeling for quantitative proteomics was used to assess JEV infected-BV2 cells and compare immune response profiles at 6, 12, and 24 h post-infection (hpi). In total, 212 upregulated proteins were detected at 6 hpi, 754 at 12 h, and 191 at 24 h. According to GO and KEGG enrichment analysis, the upregulated proteins showed enrichment for proteins related to the immune response. Parallel reaction monitoring tests, western blotting, and qPCR results showed that the adaptor protein MyD88 was not activated. The expression levels of key proteins downstream of MyD88, such as IRAK1, IRAK4, and TRAF6 did not increase; however, the expression levels of PI3K-AKT did increase. By inhibiting key proteins (TLR2, PI3K, and AKT) we confirmed that JEV activated TLR2, thus resulting in a robust inflammatory response. Consequently, the TLR2-PI3K-AKT signaling axis was proven to play a critical in the early stages of the JEV infection-induced inflammatory response in microglia.

19.
Viruses ; 14(2)2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35215787

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus (PCVs) are two major viruses that affect pigs. Coinfections between PRRSV and PCV2 are frequently reported in most outbreaks, with clinical presentations involving dyspnea, fever, reduced feed intake, weight loss, and death in fattening pigs. The NADC30-like PRRSV and PCV2d are the main circulating virus strains found in China. This study determines the impact of NADC30-like PRRSV and PCV2d mono-infection and coinfection on the immune system, organ pathology, and viral shedding in five-week-old post-weaned pigs. Pigs were randomly divided into six groups: PBS, PRRSV, PCV2, PRRSV-PCV2 coinfection (co), and PRRSV-PCV2 or PCV2-PRRSV sequential infections. Fever, dyspnea, decreased feed intake, weight loss, and pig deaths occurred in groups infected with PRRSV, Co-PRRSV-PCV2, and PRRSV-PCV2. The viral load was higher in Co-PRRSV-PCV2, PRRSV-PCV2, and PCV2-PRRSV than those mono-infected with PRRSV or PCV2. Additionally, cytokines (IFN-γ, TNF-α, IL-4, and IL-10) produced by pigs under Co-PRRSV-PCV2 and PRRSV-PCV2 groups were more intense than the other groups. Necropsy findings showed hemorrhage, emphysema, and pulmonary adhesions in the lungs of pigs infected with PRRSV. Smaller alveoli and widened lung interstitium were found in the Co-PRRSV-PCV2 and PRRSV-PCV2 groups. In conclusion, PRRSV and PCV2 coinfection and sequential infection significantly increased viral pathogenicity and cytokine responses, resulting in severe clinical signs, lung pathology, and death.


Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/fisiología , Circovirus/patogenicidad , Coinfección/virología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Animales , China , Infecciones por Circoviridae/genética , Infecciones por Circoviridae/inmunología , Infecciones por Circoviridae/virología , Circovirus/genética , Coinfección/genética , Coinfección/inmunología , Coinfección/mortalidad , Femenino , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-4/genética , Interleucina-4/inmunología , Pulmón/inmunología , Pulmón/virología , Masculino , Síndrome Respiratorio y de la Reproducción Porcina/genética , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/mortalidad , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos , Virulencia
20.
Virus Res ; 291: 198177, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33038460

RESUMEN

Seneca Valley virus (SVV) is a novel Picornaviridae that is closely associated with porcine idiopathic vesicular disease (PIVD). Here, a novel SVV strain (CH-GX-01-2019) was detected and isolated from swine in Guangxi Province, China. The complete genomic sequence of CH-GX-01-2019 exhibited 93.3-98.9 % identify with other SVV isolates at the nucleotide level. CH-GX-01-2019 showed the highest level of similarity (98.9 %) with Vietnamese strains. And CH-GX-01-2019 exhibited two consecutive amino acid mutations in VP1 gene. Phylogenetic analysis based on the complete genome and the VP1 gene showed that Chinese SVV isolates can be divided into three clusters. We analyzed the geographical distributions of SVV strains in China and found that the epidemiology of SVV in China is complicated; most strains are distributed predominantly in south and central China. Between 2015 and 2019, the dominant epidemic SVV isolates in China have changed from clusters 1 and 3 to cluster 2. CH-GX-01-2019 (cluster 3) is a recombinant strain from Colombia-2016 (cluster 2) and HB-CH-2016 (cluster 1). Our findings will enhance our understanding of the prevalence and genetic variation of SVV in the swine herds of China and provide important insights into the molecular epidemiology of SVV.


Asunto(s)
Evolución Molecular , Filogenia , Infecciones por Picornaviridae/epidemiología , Infecciones por Picornaviridae/veterinaria , Picornaviridae/genética , Enfermedades de los Porcinos/epidemiología , Animales , Línea Celular , China/epidemiología , Cricetinae , Granjas , Genoma Viral , Ganado/virología , Picornaviridae/clasificación , Picornaviridae/aislamiento & purificación , Infecciones por Picornaviridae/virología , Prevalencia , Recombinación Genética , Porcinos , Enfermedades de los Porcinos/virología , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA