Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Genes Chromosomes Cancer ; 60(5): 303-313, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32734664

RESUMEN

In vitro assays for clustered DNA lesions will facilitate the analysis of the mechanisms underlying complex genome rearrangements such as chromothripsis, including the recruitment of repair factors to sites of DNA double-strand breaks (DSBs). We present a novel method generating localized DNA DSBs using UV irradiation with photomasks. The size of the damage foci and the spacing between lesions are fully adjustable, making the assay suitable for different cell types and targeted areas. We validated this setup with genomically stable epithelial cells, normal fibroblasts, pluripotent stem cells, and patient-derived primary cultures. Our method does not require a specialized device such as a laser, making it accessible to a broad range of users. Sensitization by 5-bromo-2-deoxyuridine incorporation is not required, which enables analyzing the DNA damage response in post-mitotic cells. Irradiated cells can be cultivated further, followed by time-lapse imaging or used for downstream biochemical analyses, thanks to the high throughput of the system. Importantly, we showed genome rearrangements in the irradiated cells, providing a proof of principle for the induction of structural variants by localized DNA lesions.


Asunto(s)
Roturas del ADN de Doble Cadena , Mutagénesis , Línea Celular , Células Cultivadas , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Humanos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/efectos de la radiación , Rayos Ultravioleta
2.
Proc Natl Acad Sci U S A ; 115(25): 6470-6475, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29866841

RESUMEN

Human cell models for disease based on induced pluripotent stem (iPS) cells have proven to be powerful new assets for investigating disease mechanisms. New insights have been obtained studying single mutations using isogenic controls generated by gene targeting. Modeling complex, multigenetic traits using patient-derived iPS cells is much more challenging due to line-to-line variability and technical limitations of scaling to dozens or more patients. Induced neuronal (iN) cells reprogrammed directly from dermal fibroblasts or urinary epithelia could be obtained from many donors, but such donor cells are heterogeneous, show interindividual variability, and must be extensively expanded, which can introduce random mutations. Moreover, derivation of dermal fibroblasts requires invasive biopsies. Here we show that human adult peripheral blood mononuclear cells, as well as defined purified T lymphocytes, can be directly converted into fully functional iN cells, demonstrating that terminally differentiated human cells can be efficiently transdifferentiated into a distantly related lineage. T cell-derived iN cells, generated by nonintegrating gene delivery, showed stereotypical neuronal morphologies and expressed multiple pan-neuronal markers, fired action potentials, and were able to form functional synapses. These cells were stable in the absence of exogenous reprogramming factors. Small molecule addition and optimized culture systems have yielded conversion efficiencies of up to 6.2%, resulting in the generation of >50,000 iN cells from 1 mL of peripheral blood in a single step without the need for initial expansion. Thus, our method allows the generation of sufficient neurons for experimental interrogation from a defined, homogeneous, and readily accessible donor cell population.


Asunto(s)
Diferenciación Celular/fisiología , Transdiferenciación Celular/fisiología , Leucocitos Mononucleares/citología , Neuronas/citología , Linfocitos T/citología , Adolescente , Adulto , Anciano , Reprogramación Celular/fisiología , Femenino , Fibroblastos/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Persona de Mediana Edad , Adulto Joven
3.
Nat Methods ; 14(6): 621-628, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28504679

RESUMEN

Approaches to differentiating pluripotent stem cells (PSCs) into neurons currently face two major challenges-(i) generated cells are immature, with limited functional properties; and (ii) cultures exhibit heterogeneous neuronal subtypes and maturation stages. Using lineage-determining transcription factors, we previously developed a single-step method to generate glutamatergic neurons from human PSCs. Here, we show that transient expression of the transcription factors Ascl1 and Dlx2 (AD) induces the generation of exclusively GABAergic neurons from human PSCs with a high degree of synaptic maturation. These AD-induced neuronal (iN) cells represent largely nonoverlapping populations of GABAergic neurons that express various subtype-specific markers. We further used AD-iN cells to establish that human collybistin, the loss of gene function of which causes severe encephalopathy, is required for inhibitory synaptic function. The generation of defined populations of functionally mature human GABAergic neurons represents an important step toward enabling the study of diseases affecting inhibitory synaptic transmission.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/fisiología , Proteínas de Homeodominio/genética , Células Madre Pluripotentes/fisiología , Factores de Transcripción/genética , Animales , Ingeniería Celular , Células Cultivadas , Humanos , Ratones , Células Madre Pluripotentes/citología
4.
PLoS Genet ; 8(3): e1002572, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22438824

RESUMEN

Medulloblastoma is the most common malignant brain tumor in children. A subset of medulloblastoma originates from granule cell precursors (GCPs) of the developing cerebellum and demonstrates aberrant hedgehog signaling, typically due to inactivating mutations in the receptor PTCH1, a pathomechanism recapitulated in Ptch1(+/-) mice. As nitric oxide may regulate GCP proliferation and differentiation, we crossed Ptch1(+/-) mice with mice lacking inducible nitric oxide synthase (Nos2) to investigate a possible influence on tumorigenesis. We observed a two-fold higher medulloblastoma rate in Ptch1(+/-) Nos2(-/-) mice compared to Ptch1(+/-) Nos2(+/+) mice. To identify the molecular mechanisms underlying this finding, we performed gene expression profiling of medulloblastomas from both genotypes, as well as normal cerebellar tissue samples of different developmental stages and genotypes. Downregulation of hedgehog target genes was observed in postnatal cerebellum from Ptch1(+/+) Nos2(-/-) mice but not from Ptch1(+/-) Nos2(-/-) mice. The most consistent effect of Nos2 deficiency was downregulation of growth-associated protein 43 (Gap43). Functional studies in neuronal progenitor cells demonstrated nitric oxide dependence of Gap43 expression and impaired migration upon Gap43 knock-down. Both effects were confirmed in situ by immunofluorescence analyses on tissue sections of the developing cerebellum. Finally, the number of proliferating GCPs at the cerebellar periphery was decreased in Ptch1(+/+) Nos2(-/-) mice but increased in Ptch1(+/-) Nos2(-/) (-) mice relative to Ptch1(+/-) Nos2(+/+) mice. Taken together, these results indicate that Nos2 deficiency promotes medulloblastoma development in Ptch1(+/-) mice through retention of proliferating GCPs in the external granular layer due to reduced Gap43 expression. This study illustrates a new role of nitric oxide signaling in cerebellar development and demonstrates that the localization of pre-neoplastic cells during morphogenesis is crucial for their malignant progression.


Asunto(s)
Cerebelo , Proteína GAP-43 , Meduloblastoma , Óxido Nítrico Sintasa de Tipo II/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Animales , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica , Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Ratones Mutantes , Neuronas/citología , Neuronas/metabolismo , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptores Patched , Receptor Patched-1 , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo
5.
Genes Chromosomes Cancer ; 52(3): 250-64, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23074073

RESUMEN

Invasion is a critical step in lung tumor progression. The interaction between tumor cells and their surroundings may play an important role in tumor invasion and metastasis. To better understand the mechanisms of tumor invasion and tumor-microenvironment interactions in lung tumors, total RNA was isolated from the inner tumor, tumor invasion front, adjacent lung, and distant normal lung tissue from 17 patients with primary squamous cell lung carcinoma using punch-aided laser capture microdissection. Messenger RNA expression profiles were obtained by microarray analysis, and microRNA profiles were generated from eight of these samples using TaqMan Low Density Arrays. Statistical analysis of the expression data showed extensive changes in gene expression in the inner tumor and tumor front compared with the normal lung and adjacent lung tissue. Only a few genes were differentially expressed between tumor front and the inner tumor. Several genes were validated by immunohistochemistry. Evaluation of the microRNA data revealed zonal expression differences in nearly a fourth of the microRNAs analyzed. Validation of selected microRNAs by in situ hybridization demonstrated strong expression of hsa-miR-196a in the inner tumor; moderate expression of hsa-miR-224 in the inner tumor and tumor front, and strong expression of hsa-miR-650 in the adjacent lung tissue. Pathway analysis placed the majority of genes differentially expressed between tumor and nontumor cells in intrinsic processes associated with inflammation and extrinsic processes related to lymphocyte physiology. Genes differentially expressed between the inner tumor and the adjacent lung/normal lung tissue affected pathways of arachidonic acid metabolism and eicosanoid signaling.


Asunto(s)
Carcinoma de Células Escamosas/genética , Perfilación de la Expresión Génica , Neoplasias Pulmonares/genética , Transcriptoma , Microambiente Tumoral/genética , Carcinoma de Células Escamosas/patología , Análisis por Conglomerados , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , MicroARNs/genética , Reproducibilidad de los Resultados
6.
Int J Cancer ; 132(11): 2714-9, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23169272

RESUMEN

Breast cancer is a heterogeneous disease at both the clinical and molecular levels. This heterogeneity may give rise to different therapy responses. Molecular profiling has facilitated identification of signatures for stratifying patients who would potentially benefit from given therapies. Previously, we reported on a subset of genes with the potential for predicting response of primary breast cancer to neoadjuvant chemotherapy. Herein, we report that patients with luminal (estrogen receptor α [ERα]-expressing) breast cancer were enriched for nonresponders. To identify novel factors that contribute to the survival of breast cancer cells, a loss-of-function screen was performed with a subset of genes overexpressed in patients with disease resistant to chemotherapy. This approach led us to identify protein phosphatase 1, regulatory subunit 15B (PPP1R15B) as a factor with a potentially essential role in the survival of ERα-positive breast cancer cells. Functional analyses showed that PPP1R15B depletion results in impaired proliferation due to unsuccessful transition of cells from G1 to S phase of the cell cycle, and apoptosis induction. Moreover, our data revealed a regulatory role for PPP1R15B in activating ERα. Furthermore, a high level of PPP1R15B mRNA expression was associated with poor outcome following tamoxifen-based therapy. Accordingly, knockdown of PPP1R15B expression sensitized tamoxifen-resistant MCF-7 breast cancer cells to tamoxifen while reducing ERα abundance in these cells. Our findings reveal a novel role for PPP1R15B in the survival and therapy response of ERα-positive breast cancer and may open new avenues for tumor subtype-specific therapeutic strategies in the era of personalized medicine.


Asunto(s)
Apoptosis , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteína Fosfatasa 1/metabolismo , Tamoxifeno/farmacología , Antineoplásicos Hormonales/farmacología , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Ciclo Celular , Proliferación Celular , Femenino , Humanos , Luciferasas/metabolismo , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 1/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Células Tumorales Cultivadas
7.
ALTEX ; 40(3): 452-470, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37158368

RESUMEN

Proper brain development is based on the orchestration of key neurodevelopmental processes (KNDP), including the for­mation and function of neural networks. If at least one KNDP is affected by a chemical, an adverse outcome is expected. To enable a higher testing throughput than the guideline animal experiments, a developmental neurotoxicity (DNT) in vitro testing battery (DNT IVB) comprising a variety of assays that model several KNDPs was set up. Gap analysis revealed the need for a human-based assay to assess neural network formation and function (NNF). Therefore, we established the human NNF (hNNF) assay. A co-culture comprised of human induced pluripotent stem cell (hiPSC)-derived excitatory and inhibitory neurons as well as primary human astroglia was differentiated for 35 days on microelectrode arrays (MEA), and spontaneous electrical activity, together with cytotoxicity, was assessed on a weekly basis after washout of the compounds 24 h prior to measurements. In addition to the characterization of the test system, the assay was challenged with 28 com­pounds, mainly pesticides, identifying their DNT potential by evaluating specific spike-, burst-, and network parameters. This approach confirmed the suitability of the assay for screening environmental chemicals. Comparison of benchmark con­centrations (BMC) with an NNF in vitro assay (rNNF) based on primary rat cortical cells revealed differences in sensitivity. Together with the successful implementation of hNNF data into a postulated stressor-specific adverse outcome pathway (AOP) network associated with a plausible molecular initiating event for deltamethrin, this study suggests the hNNF assay as a useful complement to the DNT IVB.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndromes de Neurotoxicidad , Plaguicidas , Humanos , Ratas , Animales , Células Cultivadas , Plaguicidas/toxicidad , Neuronas/fisiología , Síndromes de Neurotoxicidad/metabolismo
8.
Toxicol Sci ; 180(2): 295-312, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33537736

RESUMEN

Assessment of neuroactive effects of chemicals in cell-based assays remains challenging as complex functional tissue is required for biologically relevant readouts. Recent in vitro models using rodent primary neural cultures grown on multielectrode arrays allow quantitative measurements of neural network activity suitable for neurotoxicity screening. However, robust systems for testing effects on network function in human neural models are still lacking. The increasing number of differentiation protocols for generating neurons from human-induced pluripotent stem cells (hiPSCs) holds great potential to overcome the unavailability of human primary tissue and expedite cell-based assays. Yet, the variability in neuronal activity, prolonged ontogeny and rather immature stage of most neuronal cells derived by standard differentiation techniques greatly limit their utility for screening neurotoxic effects on human neural networks. Here, we used excitatory and inhibitory neurons, separately generated by direct reprogramming from hiPSCs, together with primary human astrocytes to establish highly functional cultures with defined cell ratios. Such neuron/glia cocultures exhibited pronounced neuronal activity and robust formation of synchronized network activity on multielectrode arrays, albeit with noticeable delay compared with primary rat cortical cultures. We further investigated acute changes of network activity in human neuron/glia cocultures and rat primary cortical cultures in response to compounds with known adverse neuroactive effects, including gamma amino butyric acid receptor antagonists and multiple pesticides. Importantly, we observed largely corresponding concentration-dependent effects on multiple neural network activity metrics using both neural culture types. These results demonstrate the utility of directly converted neuronal cells from hiPSCs for functional neurotoxicity screening of environmental chemicals.


Asunto(s)
Células Madre Pluripotentes Inducidas , Roedores , Animales , Astrocitos , Diferenciación Celular , Células Cultivadas , Humanos , Neuronas , Ratas
9.
Cancer Cell ; 39(3): 407-422.e13, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33545065

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) is an aggressive childhood tumor of the brainstem with currently no curative treatment available. The vast majority of DIPGs carry a histone H3 mutation leading to a lysine 27-to-methionine exchange (H3K27M). We engineered human induced pluripotent stem cells (iPSCs) to carry an inducible H3.3-K27M allele in the endogenous locus and studied the effects of the mutation in different disease-relevant neural cell types. H3.3-K27M upregulated bivalent promoter-associated developmental genes, producing diverse outcomes in different cell types. While being fatal for iPSCs, H3.3-K27M increased proliferation in neural stem cells (NSCs) and to a lesser extent in oligodendrocyte progenitor cells (OPCs). Only NSCs gave rise to tumors upon induction of H3.3-K27M and TP53 inactivation in an orthotopic xenograft model recapitulating human DIPGs. In NSCs, H3.3-K27M leads to maintained expression of stemness and proliferative genes and a premature activation of OPC programs that together may cause tumor initiation.


Asunto(s)
Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/parasitología , Glioma/genética , Glioma/patología , Histonas/genética , Células Madre Pluripotentes Inducidas/patología , Células-Madre Neurales/patología , Animales , Línea Celular , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID
10.
Hepatology ; 50(4): 1251-62, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19670424

RESUMEN

UNLABELLED: The nuclear factor-kappaB (NF-kappaB) signaling pathway has been recently shown to participate in inflammation-induced cancer progression. Here, we describe a detailed analysis of the NF-kappaB-dependent gene regulatory network in the well-established Mdr2 knockout mouse model of inflammation-associated liver carcinogenesis. Expression profiling of NF-kappaB-deficient and NF-kappaB-proficient hepatocellular carcinoma (HCC) revealed a comprehensive list of known and novel putative NF-kappaB target genes, including S100a8 and S100a9. We detected increased co-expression of S100A8 and S100A9 proteins in mouse HCC cells, in human HCC tissue, and in the HCC cell line Hep3B on ectopic RelA expression. Finally, we found a synergistic function for S100A8 and S100A9 in Hep3B cells resulting in a significant induction of reactive oxygen species (ROS), accompanied by enhanced cell survival. CONCLUSION: We identified S100A8 and S100A9 as novel NF-kappaB target genes in HCC cells during inflammation-associated liver carcinogenesis and provide experimental evidence that increased co-expression of both proteins supports malignant progression by activation of ROS-dependent signaling pathways and protection from cell death.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , FN-kappa B/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Apoptosis/fisiología , Calgranulina A/genética , Calgranulina B/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Neoplasias Hepáticas/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
11.
Cell Stem Cell ; 25(1): 103-119.e6, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31155484

RESUMEN

Human pluripotent stem cells can be rapidly converted into functional neurons by ectopic expression of proneural transcription factors. Here we show that directly reprogrammed neurons, despite their rapid maturation kinetics, can model teratogenic mechanisms that specifically affect early neurodevelopment. We delineated distinct phases of in vitro maturation during reprogramming of human neurons and assessed the cellular phenotypes of valproic acid (VPA), a teratogenic drug. VPA exposure caused chronic impairment of dendritic morphology and functional properties of developing neurons, but not those of mature neurons. These pathogenic effects were associated with VPA-mediated inhibition of the histone deacetylase (HDAC) and glycogen synthase kinase-3 (GSK-3) pathways, which caused transcriptional downregulation of many genes, including MARCKSL1, an actin-stabilizing protein essential for dendritic morphogenesis and synapse maturation during early neurodevelopment. Our findings identify a developmentally restricted pathogenic mechanism of VPA and establish the use of reprogrammed neurons as an effective platform for modeling teratogenic pathways.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Sinapsis Eléctricas/metabolismo , Proteínas de Microfilamentos/metabolismo , Neuronas/fisiología , Células Madre Pluripotentes/fisiología , Teratoma/metabolismo , Animales , Proteínas de Unión a Calmodulina/genética , Carcinogénesis , Células Cultivadas , Reprogramación Celular , Glucógeno Sintasa Quinasa 3/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ratones , Proteínas de Microfilamentos/genética , Neurogénesis , Transducción de Señal , Teratoma/inducido químicamente , Teratoma/patología , Ácido Valproico/toxicidad
12.
Neuro Oncol ; 21(7): 867-877, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-30943283

RESUMEN

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive pediatric brain tumors that are characterized by a recurrent mutation (K27M) within the histone H3 encoding genes H3F3A and HIST1H3A/B/C. These mutations have been shown to induce a global reduction in the repressive histone modification H3K27me3, which together with widespread changes in DNA methylation patterns results in an extensive transcriptional reprogramming hampering the identification of single therapeutic targets based on a molecular rationale. METHODS: We applied a large-scale gene knockdown approach using a pooled short hairpin (sh)RNA library in combination with next-generation sequencing in order to identify DIPG-specific vulnerabilities. The therapeutic potential of specific inhibitors of candidate targets was validated in a secondary drug screen. RESULTS: We identified fibroblast growth factor receptor (FGFR) signaling and the serine/threonine protein phosphatase 2A (PP2A) as top depleted hits in patient-derived DIPG cell cultures and validated their lethal potential by FGF ligand depletion and genetic knockdown of the PP2A structural subunit PPP2R1A. Further, pharmacological inhibition of FGFR and PP2A signaling through ponatinib and LB-100 treatment, respectively, exhibited strong tumor-specific anti-proliferative and apoptotic activity in cultured DIPG cells. CONCLUSIONS: Our findings suggest FGFR and PP2A signaling as potential new therapeutic targets for the treatment of DIPGs.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias del Tronco Encefálico/genética , Glioma Pontino Intrínseco Difuso/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteína Fosfatasa 2/antagonistas & inhibidores , ARN Interferente Pequeño/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Apoptosis , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Neoplasias del Tronco Encefálico/patología , Proliferación Celular , Metilación de ADN , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/patología , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Biblioteca de Genes , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteína Fosfatasa 2/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Células Tumorales Cultivadas
13.
Nat Commun ; 9(1): 4760, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420702

RESUMEN

Chromothripsis and chromoanasynthesis are catastrophic events leading to clustered genomic rearrangements. Whole-genome sequencing revealed frequent complex genomic rearrangements (n = 16/26) in brain tumors developing in mice deficient for factors involved in homologous-recombination-repair or non-homologous-end-joining. Catastrophic events were tightly linked to Myc/Mycn amplification, with increased DNA damage and inefficient apoptotic response already observable at early postnatal stages. Inhibition of repair processes and comparison of the mouse tumors with human medulloblastomas (n = 68) and glioblastomas (n = 32) identified chromothripsis as associated with MYC/MYCN gains and with DNA repair deficiencies, pointing towards therapeutic opportunities to target DNA repair defects in tumors with complex genomic rearrangements.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Daño del ADN/genética , Reparación del ADN/genética , Genoma , Animales , Apoptosis/genética , Línea Celular Tumoral , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Unión al ADN/metabolismo , Amplificación de Genes , Reordenamiento Génico/genética , Recombinación Homóloga/genética , Humanos , Cariotipificación , Ratones , Proteína Proto-Oncogénica N-Myc/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Cell Stem Cell ; 20(3): 329-344.e7, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28089908

RESUMEN

Understanding the relative contributions of genetic and epigenetic abnormalities to acute myeloid leukemia (AML) should assist integrated design of targeted therapies. In this study, we generated induced pluripotent stem cells (iPSCs) from AML patient samples harboring MLL rearrangements and found that they retained leukemic mutations but reset leukemic DNA methylation/gene expression patterns. AML-iPSCs lacked leukemic potential, but when differentiated into hematopoietic cells, they reacquired the ability to give rise to leukemia in vivo and reestablished leukemic DNA methylation/gene expression patterns, including an aberrant MLL signature. Epigenetic reprogramming was therefore not sufficient to eliminate leukemic behavior. This approach also allowed us to study the properties of distinct AML subclones, including differential drug susceptibilities of KRAS mutant and wild-type cells, and predict relapse based on increased cytarabine resistance of a KRAS wild-type subclone. Overall, our findings illustrate the value of AML-iPSCs for investigating the mechanistic basis and clonal properties of human AML.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Leucemia Mieloide Aguda/patología , Modelos Biológicos , Crisis Blástica/patología , Línea Celular Tumoral , Linaje de la Célula , Forma de la Célula , Reprogramación Celular , Aberraciones Cromosómicas , Células Clonales , Metilación de ADN/genética , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Células HEK293 , Hematopoyesis/genética , Humanos , Leucemia Mieloide Aguda/genética , Terapia Molecular Dirigida , Mutación/genética , Invasividad Neoplásica , Fenotipo
15.
Philos Trans R Soc Lond B Biol Sci ; 370(1680): 20140368, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26416679

RESUMEN

The predominant view of embryonic development and cell differentiation has been that rigid and even irreversible epigenetic marks are laid down along the path of cell specialization ensuring the proper silencing of unrelated lineage programmes. This model made the prediction that specialized cell types are stable and cannot be redirected into other lineages. Accordingly, early attempts to change the identity of somatic cells had little success and was limited to conversions between closely related cell types. Nuclear transplantation experiments demonstrated, however, that specialized cells even from adult mammals can be reprogrammed into a totipotent state. The discovery that a small combination of transcription factors can reprogramme cells to pluripotency without the need of oocytes further supported the view that these epigenetic barriers can be overcome much easier than assumed, but the extent of this flexibility was still unclear. When we showed that a differentiated mesodermal cell can be directly converted to a differentiated ectodermal cell without a pluripotent intermediate, it was suggested that in principle any cell type could be converted into any other cell type. Indeed, the work of several groups in recent years has provided many more examples of direct somatic lineage conversions. Today, the question is not anymore whether a specific cell type can be generated by direct reprogramming but how it can be induced.


Asunto(s)
Linaje de la Célula , Reprogramación Celular , Animales , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Neuronas/clasificación , Neuronas/citología , Técnicas de Transferencia Nuclear
16.
J Clin Oncol ; 29(29): 3852-61, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21911727

RESUMEN

PURPOSE: Integrated genomics approaches have revealed at least four distinct biologic variants of medulloblastoma: WNT (wingless), SHH (sonic hedgehog), group C, and group D. Because of the remarkable clinical heterogeneity of group D tumors and the dismal prognosis of group C patients, it is vital to identify molecular biomarkers that will allow early and effective treatment stratification in these non-WNT/non-SHH tumors. PATIENTS AND METHODS: We combined transcriptome and DNA copy-number analyses for 64 primary medulloblastomas. Bioinformatic tools were used to discover marker genes of molecular variants. Differentially expressed transcripts were evaluated for prognostic value in the screening cohort. The prognostic power of follistatin-like 5 (FSTL5) immunopositivity was tested for 235 nonoverlapping medulloblastoma samples on two independent tissue microarrays. RESULTS: Comprehensive analyses of transcriptomic and genetic alterations delineate four distinct variants of medulloblastoma. Stable subgroup separation was achieved by using the 300 transcripts that varied the most. Distinct expression patterns of FSTL5 in each molecular subgroup were confirmed by quantitative real-time polymerase chain reaction. Immunopositivity of FSTL5 identified a large cohort of patients (84 of 235 patients; 36%) at high risk for relapse and death. Importantly, more than 50% of non-WNT/non-SHH tumors displayed FSTL5 negativity, delineating a large patient cohort with a good prognosis who would otherwise be considered intermediate or high-risk on the basis of current molecular subgrouping. CONCLUSION: FSTL5 expression denoted a dismal prognosis both within and across medulloblastoma subgroups. The addition of FSTL5 immunohistochemistry to existing molecular stratification schemes constitutes a reliable and cost-effective tool for prognostication in future clinical trials of medulloblastoma.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas Relacionadas con la Folistatina/genética , Meduloblastoma/genética , Meduloblastoma/patología , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/metabolismo , Niño , Estudios de Cohortes , Supervivencia sin Enfermedad , Proteínas Relacionadas con la Folistatina/biosíntesis , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Meduloblastoma/metabolismo , Análisis por Micromatrices , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Supervivencia
17.
Cancer Res ; 68(17): 6877-83, 2008 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-18757399

RESUMEN

Expression and function of the oncogenic transcription factor activator protein (AP-1; mainly composed of Jun and Fos proteins) is required for neoplastic transformation of keratinocytes in vitro and tumor promotion as well as malignant progression in vivo. Here, we describe the identification of 372 differentially expressed genes comparing skin tumor samples of K5-SOS-F transgenic mice (Fos(f/f) SOS(+)) with samples derived from animals with a specific deletion of c-Fos in keratinocytes (Fos(Deltaep) SOS(+)). Fos-dependent transcription of selected genes was confirmed by quantitative real-time PCR analysis using tumor samples and mouse back skin treated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). One of the most differentially expressed genes encodes the small mucin-like glycoprotein Podoplanin (Pdpn), whose expression correlates with malignant progression in mouse tumor model systems and human cancer. We found Pdpn and Fos expression in chemically induced mouse skin tumors, and detailed analysis of the Pdpn gene promoter revealed impaired activity in Fos-deficient mouse embryonic fibroblasts, which could be restored by ectopic Fos expression. Direct Fos protein binding to the Pdpn promoter was shown by chromatin immunoprecipitation and a TPA-induced complex at a TPA-responsive element-like motif in the proximal promoter was identified by electrophoretic mobility shift assays. In summary, we could define a Fos-dependent genetic program in a well-established model of skin tumors. Systematic analysis of these novel target genes will guide us in elucidating the molecular mechanisms of AP-1-regulated pathways that are critically implicated in neoplastic transformation and/or malignant progression.


Asunto(s)
Transformación Celular Neoplásica , Genes fos , Glicoproteínas de Membrana/genética , Neoplasias Cutáneas/genética , Animales , Progresión de la Enfermedad , Ratones , Invasividad Neoplásica , Neoplasias Cutáneas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA