Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 175(7): 1917-1930.e13, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550789

RESUMEN

Ebola virus (EBOV) infection often results in fatal illness in humans, yet little is known about how EBOV usurps host pathways during infection. To address this, we used affinity tag-purification mass spectrometry (AP-MS) to generate an EBOV-host protein-protein interaction (PPI) map. We uncovered 194 high-confidence EBOV-human PPIs, including one between the viral transcription regulator VP30 and the host ubiquitin ligase RBBP6. Domain mapping identified a 23 amino acid region within RBBP6 that binds to VP30. A crystal structure of the VP30-RBBP6 peptide complex revealed that RBBP6 mimics the viral nucleoprotein (NP) binding to the same interface of VP30. Knockdown of endogenous RBBP6 stimulated viral transcription and increased EBOV replication, whereas overexpression of either RBBP6 or the peptide strongly inhibited both. These results demonstrate the therapeutic potential of biologics that target this interface and identify additional PPIs that may be leveraged for novel therapeutic strategies.


Asunto(s)
Proteínas Portadoras , Proteínas de Unión al ADN , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/metabolismo , Factores de Transcripción , Proteínas Virales , Replicación Viral/fisiología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/patología , Humanos , Mapeo de Interacción de Proteínas , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
2.
Nature ; 583(7816): 459-468, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32353859

RESUMEN

A newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption1,2. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells. Here we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins that physically associated with each of the SARS-CoV-2 proteins using affinity-purification mass spectrometry, identifying 332 high-confidence protein-protein interactions between SARS-CoV-2 and human proteins. Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (of which, 29 drugs are approved by the US Food and Drug Administration, 12 are in clinical trials and 28 are preclinical compounds). We screened a subset of these in multiple viral assays and found two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the sigma-1 and sigma-2 receptors. Further studies of these host-factor-targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/metabolismo , Reposicionamiento de Medicamentos , Terapia Molecular Dirigida , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/metabolismo , Mapas de Interacción de Proteínas , Proteínas Virales/metabolismo , Animales , Antivirales/clasificación , Antivirales/farmacología , Betacoronavirus/genética , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidad , COVID-19 , Chlorocebus aethiops , Clonación Molecular , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Inmunidad Innata , Espectrometría de Masas , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/virología , Unión Proteica , Biosíntesis de Proteínas/efectos de los fármacos , Dominios Proteicos , Mapeo de Interacción de Proteínas , Receptores sigma/metabolismo , SARS-CoV-2 , Proteínas Ligasas SKP Cullina F-box/metabolismo , Células Vero , Proteínas Virales/genética , Tratamiento Farmacológico de COVID-19
3.
J Proteome Res ; 20(2): 1133-1152, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33464917

RESUMEN

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), was declared a pandemic infection in March 2020. As of December 2020, two COVID-19 vaccines have been authorized for emergency use by the U.S. Food and Drug Administration, but there are no effective drugs to treat COVID-19, and pandemic mitigation efforts like physical distancing have had acute social and economic consequences. In this perspective, we discuss how the proteomic research community can leverage technologies and expertise to address the pandemic by investigating four key areas of study in SARS-CoV-2 biology. Specifically, we discuss how (1) mass spectrometry-based structural techniques can overcome limitations and complement traditional structural approaches to inform the dynamic structure of SARS-CoV-2 proteins, complexes, and virions; (2) virus-host protein-protein interaction mapping can identify the cellular machinery required for SARS-CoV-2 replication; (3) global protein abundance and post-translational modification profiling can characterize signaling pathways that are rewired during infection; and (4) proteomic technologies can aid in biomarker identification, diagnostics, and drug development in order to monitor COVID-19 pathology and investigate treatment strategies. Systems-level high-throughput capabilities of proteomic technologies can yield important insights into SARS-CoV-2 biology that are urgently needed during the pandemic, and more broadly, can inform coronavirus virology and host biology.


Asunto(s)
COVID-19/prevención & control , Proteoma/metabolismo , Proteómica/métodos , SARS-CoV-2/metabolismo , COVID-19/epidemiología , COVID-19/virología , Interacciones Huésped-Patógeno , Humanos , Espectrometría de Masas/métodos , Pandemias , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , SARS-CoV-2/fisiología , Proteínas Virales/metabolismo
4.
mBio ; 15(4): e0222223, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38411080

RESUMEN

During HIV infection of CD4+ T cells, ubiquitin pathways are essential to viral replication and host innate immune response; however, the role of specific E3 ubiquitin ligases is not well understood. Proteomics analyses identified 116 single-subunit E3 ubiquitin ligases expressed in activated primary human CD4+ T cells. Using a CRISPR-based arrayed spreading infectivity assay, we systematically knocked out 116 E3s from activated primary CD4+ T cells and infected them with NL4-3 GFP reporter HIV-1. We found 10 E3s significantly positively or negatively affected HIV infection in activated primary CD4+ T cells, including UHRF1 (pro-viral) and TRAF2 (anti-viral). Furthermore, deletion of either TRAF2 or UHRF1 in three JLat models of latency spontaneously increased HIV transcription. To verify this effect, we developed a CRISPR-compatible resting primary human CD4+ T cell model of latency. Using this system, we found that deletion of TRAF2 or UHRF1 initiated latency reactivation and increased virus production from primary human resting CD4+ T cells, suggesting these two E3s represent promising targets for future HIV latency reversal strategies. IMPORTANCE: HIV, the virus that causes AIDS, heavily relies on the machinery of human cells to infect and replicate. Our study focuses on the host cell's ubiquitination system which is crucial for numerous cellular processes. Many pathogens, including HIV, exploit this system to enhance their own replication and survival. E3 proteins are part of the ubiquitination pathway that are useful drug targets for host-directed therapies. We interrogated the 116 E3s found in human immune cells known as CD4+ T cells, since these are the target cells infected by HIV. Using CRISPR, a gene-editing tool, we individually removed each of these enzymes and observed the impact on HIV infection in human CD4+ T cells isolated from healthy donors. We discovered that 10 of the E3 enzymes had a significant effect on HIV infection. Two of them, TRAF2 and UHRF1, modulated HIV activity within the cells and triggered an increased release of HIV from previously dormant or "latent" cells in a new primary T cell assay. This finding could guide strategies to perturb hidden HIV reservoirs, a major hurdle to curing HIV. Our study offers insights into HIV-host interactions, identifies new factors that influence HIV infection in immune cells, and introduces a novel methodology for studying HIV infection and latency in human immune cells.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT , Infecciones por VIH , VIH , Factor 2 Asociado a Receptor de TNF , Ubiquitina-Proteína Ligasas , Latencia del Virus , Humanos , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Linfocitos T CD4-Positivos , Sistemas CRISPR-Cas , Factor 2 Asociado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Replicación Viral , VIH/fisiología
5.
Nat Commun ; 13(1): 1752, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365639

RESUMEN

Human Immunodeficiency Virus (HIV) relies on host molecular machinery for replication. Systematic attempts to genetically or biochemically define these host factors have yielded hundreds of candidates, but few have been functionally validated in primary cells. Here, we target 426 genes previously implicated in the HIV lifecycle through protein interaction studies for CRISPR-Cas9-mediated knock-out in primary human CD4+ T cells in order to systematically assess their functional roles in HIV replication. We achieve efficient knockout (>50% of alleles) in 364 of the targeted genes and identify 86 candidate host factors that alter HIV infection. 47 of these factors validate by multiplex gene editing in independent donors, including 23 factors with restrictive activity. Both gene editing efficiencies and HIV-1 phenotypes are highly concordant among independent donors. Importantly, over half of these factors have not been previously described to play a functional role in HIV replication, providing numerous novel avenues for understanding HIV biology. These data further suggest that host-pathogen protein-protein interaction datasets offer an enriched source of candidates for functional host factor discovery and provide an improved understanding of the mechanics of HIV replication in primary T cells.


Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos/metabolismo , Edición Génica , VIH-1/genética , Interacciones Microbiota-Huesped/genética , Humanos
6.
Elife ; 112022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35060479

RESUMEN

Background: In a phase 3 trial in African infants and children, the RTS,S/AS01 vaccine (GSK) showed moderate efficacy against clinical malaria. We sought to further understand RTS,S/AS01-induced immune responses associated with vaccine protection. Methods: Applying the blood transcriptional module (BTM) framework, we characterized the transcriptomic response to RTS,S/AS01 vaccination in antigen-stimulated (and vehicle control) peripheral blood mononuclear cells sampled from a subset of trial participants at baseline and month 3 (1-month post-third dose). Using a matched case-control study design, we evaluated which of these 'RTS,S/AS01 signature BTMs' associated with malaria case status in RTS,S/AS01 vaccinees. Antigen-specific T-cell responses were analyzed by flow cytometry. We also performed a cross-study correlates analysis where we assessed the generalizability of our findings across three controlled human malaria infection studies of healthy, malaria-naive adult RTS,S/AS01 recipients. Results: RTS,S/AS01 vaccination was associated with downregulation of B-cell and monocyte-related BTMs and upregulation of T-cell-related BTMs, as well as higher month 3 (vs. baseline) circumsporozoite protein-specific CD4+ T-cell responses. There were few RTS,S/AS01-associated BTMs whose month 3 levels correlated with malaria risk. In contrast, baseline levels of BTMs associated with dendritic cells and with monocytes (among others) correlated with malaria risk. The baseline dendritic cell- and monocyte-related BTM correlations with malaria risk appeared to generalize to healthy, malaria-naive adults. Conclusions: A prevaccination transcriptomic signature associates with malaria in RTS,S/AS01-vaccinated African children, and elements of this signature may be broadly generalizable. The consistent presence of monocyte-related modules suggests that certain monocyte subsets may inhibit protective RTS,S/AS01-induced responses. Funding: Funding was obtained from the NIH-NIAID (R01AI095789), NIH-NIAID (U19AI128914), PATH Malaria Vaccine Initiative (MVI), and Ministerio de Economía y Competitividad (Instituto de Salud Carlos III, PI11/00423 and PI14/01422). The RNA-seq project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under grant number U19AI110818 to the Broad Institute. This study was also supported by the Vaccine Statistical Support (Bill and Melinda Gates Foundation award INV-008576/OPP1154739 to R.G.). C.D. was the recipient of a Ramon y Cajal Contract from the Ministerio de Economía y Competitividad (RYC-2008-02631). G.M. was the recipient of a Sara Borrell-ISCIII fellowship (CD010/00156) and work was performed with the support of Department of Health, Catalan Government grant (SLT006/17/00109). This research is part of the ISGlobal's Program on the Molecular Mechanisms of Malaria which is partially supported by the Fundación Ramón Areces and we acknowledge support from the Spanish Ministry of Science and Innovation through the 'Centro de Excelencia Severo Ochoa 2019-2023' Program (CEX2018-000806-S), and support from the Generalitat de Catalunya through the CERCA Program.


Asunto(s)
Leucocitos Mononucleares , Vacunas contra la Malaria/inmunología , Malaria Falciparum , Transcriptoma , Vacunas Sintéticas/inmunología , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Estudios de Casos y Controles , Preescolar , Ensayos Clínicos Fase III como Asunto , Humanos , Lactante , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Mozambique , Linfocitos T/inmunología , Linfocitos T/metabolismo , Tanzanía , Transcriptoma/genética , Transcriptoma/inmunología
7.
Science ; 370(6521)2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33060197

RESUMEN

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a grave threat to public health and the global economy. SARS-CoV-2 is closely related to the more lethal but less transmissible coronaviruses SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have carried out comparative viral-human protein-protein interaction and viral protein localization analyses for all three viruses. Subsequent functional genetic screening identified host factors that functionally impinge on coronavirus proliferation, including Tom70, a mitochondrial chaperone protein that interacts with both SARS-CoV-1 and SARS-CoV-2 ORF9b, an interaction we structurally characterized using cryo-electron microscopy. Combining genetically validated host factors with both COVID-19 patient genetic data and medical billing records identified molecular mechanisms and potential drug treatments that merit further molecular and clinical study.


Asunto(s)
COVID-19/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Interacciones Microbiota-Huesped , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mapas de Interacción de Proteínas , SARS-CoV-2/metabolismo , Síndrome Respiratorio Agudo Grave/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Secuencia Conservada , Proteínas de la Nucleocápside de Coronavirus/genética , Microscopía por Crioelectrón , Humanos , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Conformación Proteica
8.
bioRxiv ; 2020 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-32511329

RESUMEN

An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption 1,2 . There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains.

9.
Nat Protoc ; 14(1): 1-27, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30559373

RESUMEN

CRISPR-Cas9 gene-editing strategies have revolutionized our ability to engineer the human genome for robust functional interrogation of complex biological processes. We have recently adapted this technology for use in primary human CD4+ T cells to create a high-throughput platform for analyzing the role of host factors in HIV infection and pathogenesis. Briefly, CRISPR-Cas9 ribonucleoproteins (crRNPs) are synthesized in vitro and delivered to activated CD4+ T cells by nucleofection. These cells are then assayed for editing efficiency and expanded for use in downstream cellular, genetic, or protein-based assays. This platform supports the rapid, arrayed generation of multiple gene manipulations and is widely adaptable across culture conditions, infection protocols, and downstream applications. Here, we present detailed protocols for crRNP synthesis, primary T-cell culture, 96-well nucleofection, molecular validation, and HIV infection, and discuss additional considerations for guide and screen design, as well as crRNP multiplexing. Taken together, this procedure allows high-throughput identification and mechanistic interrogation of HIV host factors in primary CD4+ T cells by gene knockout, validation, and HIV spreading infection in as little as 2-3 weeks.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Sistemas CRISPR-Cas , Edición Génica/métodos , VIH-1/inmunología , Ensayos Analíticos de Alto Rendimiento , Interacciones Huésped-Patógeno/inmunología , Anticuerpos/farmacología , Antígenos CD/genética , Antígenos CD/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/inmunología , Núcleo Celular/metabolismo , Núcleo Celular/virología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Electroporación/métodos , Genoma Humano , VIH-1/genética , Interacciones Huésped-Patógeno/genética , Humanos , Activación de Linfocitos , Cultivo Primario de Células , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/inmunología
10.
Cell Chem Biol ; 23(5): 608-617, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27133314

RESUMEN

Kinetoplastids cause Chagas disease, human African trypanosomiasis, and leishmaniases. Current treatments for these diseases are toxic and inefficient, and our limited knowledge of drug targets and inhibitors has dramatically hindered the development of new drugs. Here we used a chemogenetic approach to identify new kinetoplastid drug targets and inhibitors. We conditionally knocked down Trypanosoma brucei inositol phosphate (IP) pathway genes and showed that almost every pathway step is essential for parasite growth and infection. Using a genetic and chemical screen, we identified inhibitors that target IP pathway enzymes and are selective against T. brucei. Two series of these inhibitors acted on T. brucei inositol polyphosphate multikinase (IPMK) preventing Ins(1,4,5)P3 and Ins(1,3,4,5)P4 phosphorylation. We show that IPMK is functionally conserved among kinetoplastids and that its inhibition is also lethal for Trypanosoma cruzi. Hence, IP enzymes are viable drug targets in kinetoplastids, and IPMK inhibitors may aid the development of new drugs.


Asunto(s)
Fosfatos de Inositol/metabolismo , Parásitos/efectos de los fármacos , Parásitos/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Animales , Relación Dosis-Respuesta a Droga , Células HeLa , Células Hep G2 , Humanos , Fosfatos de Inositol/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos BALB C , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Trypanosoma brucei brucei/crecimiento & desarrollo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA