Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(7): 155, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858311

RESUMEN

White lupin (Lupinus albus L.) is a high-protein grain legume alternative to soybean in Central Europe, but its cultivation is risky due to the fungal disease anthracnose that can cause severe yield damage. In addition, management of seed alkaloids is critical for human nutrition and animal feed. We report on a white lupin collection of genebank accessions, advanced breeding lines and cultivars that was genotyped and phenotypically characterized for anthracnose resistance and seed alkaloids and protein levels. Using genotyping by sequencing (GBS), SeqSNP-targeted GBS, BiomarkX genotyping and Sanger sequencing, a genetic resource of genome-wide SNPs for white lupin was established. We determined anthracnose resistance in two years field trials at four locations with infection rows and measured seed alkaloids and protein levels by near-infrared spectroscopy (NIRS). Few white lupin breeding lines showed anthracnose resistance comparable or better than Celina and Frieda, currently the best commercial cultivars in Germany. NIRS estimates for seed alkaloids and protein levels revealed variation in the white lupin collection. Using genome-wide association studies (GWAS), we identified SNPs significantly associated with anthracnose resistance in the field representing known and new genomic regions. We confirmed the pauper locus and detected new SNP markers significantly associated with seed alkaloids. For the first time, we present loci associated with total grain protein content. Finally, we tested the potential of genomic prediction (GP) in predicting the phenotype of these three quantitative traits. Application of results and resources are discussed in the context of fostering breeding programs for white lupin.


Asunto(s)
Alcaloides , Resistencia a la Enfermedad , Lupinus , Fenotipo , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Semillas , Lupinus/genética , Lupinus/microbiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Semillas/genética , Semillas/química , Genotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fitomejoramiento , Estudios de Asociación Genética
2.
Proc Natl Acad Sci U S A ; 115(21): E4861-E4869, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29735650

RESUMEN

Cyanobacteria are phototrophic prokaryotes that evolved oxygenic photosynthesis ∼2.7 billion y ago and are presently responsible for ∼10% of total global photosynthetic production. To cope with the evolutionary pressure of dropping ambient CO2 concentrations, they evolved a CO2-concentrating mechanism (CCM) to augment intracellular inorganic carbon (Ci) levels for efficient CO2 fixation. However, how cyanobacteria sense the fluctuation in Ci is poorly understood. Here we present biochemical, structural, and physiological insights into SbtB, a unique PII-like signaling protein, which provides new insights into Ci sensing. SbtB is highly conserved in cyanobacteria and is coexpressed with CCM genes. The SbtB protein from the cyanobacterium Synechocystis sp. PCC 6803 bound a variety of adenosine nucleotides, including the second messenger cAMP. Cocrystal structures unraveled the individual binding modes of trimeric SbtB with AMP and cAMP. The nucleotide-binding pocket is located between the subunit clefts of SbtB, perfectly matching the structure of canonical PII proteins. This clearly indicates that proteins of the PII superfamily arose from a common ancestor, whose structurally conserved nucleotide-binding pocket has evolved to sense different adenyl nucleotides for various signaling functions. Moreover, we provide physiological and biochemical evidence for the involvement of SbtB in Ci acclimation. Collectively, our results suggest that SbtB acts as a Ci sensor protein via cAMP binding, highlighting an evolutionarily conserved role for cAMP in signaling the cellular carbon status.


Asunto(s)
Proteínas Bacterianas/metabolismo , Evolución Biológica , Compuestos Inorgánicos de Carbono/metabolismo , Cianobacterias/metabolismo , AMP Cíclico/metabolismo , Proteína Fosfatasa 2/metabolismo , Aclimatación , Cristalografía por Rayos X , Cianobacterias/crecimiento & desarrollo , Fotosíntesis , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA