Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 18(12)2018 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-30544791

RESUMEN

Light detection and ranging (LiDAR) systems based on silicon single-photon avalanche diodes (SPAD) offer several advantages, like the fabrication of system-on-chips with a co-integrated detector and dedicated electronics, as well as low cost and high durability due to well-established CMOS technology. On the other hand, silicon-based detectors suffer from high background light in outdoor applications, like advanced driver assistance systems or autonomous driving, due to the limited wavelength range in the infrared spectrum. In this paper we present a novel method based on the adaptive adjustment of photon coincidence detection to suppress the background light and simultaneously improve the dynamic range. A major disadvantage of fixed parameter coincidence detection is the increased dynamic range of the resulting event rate, allowing good measurement performance only at a specific target reflectance. To overcome this limitation we have implemented adaptive photon coincidence detection. In this technique the parameters of the photon coincidence detection are adjusted to the actual measured background light intensity, giving a reduction of the event rate dynamic range and allowing the perception of high dynamic scenes. We present a 192 × 2 pixel CMOS SPAD-based LiDAR sensor utilizing this technique and accompanying outdoor measurements showing the capability of it. In this sensor adaptive photon coincidence detection improves the dynamic range of the measureable target reflectance by over 40 dB.

2.
Nat Commun ; 12(1): 6499, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764262

RESUMEN

Quantum computers have the potential to create important new opportunities for ongoing essential research on gauge theories. They can provide simulations that are unattainable on classical computers such as sign-problem afflicted models or time evolutions. In this work, we variationally prepare the low-lying eigenstates of a non-Abelian gauge theory with dynamically coupled matter on a quantum computer. This enables the observation of hadrons and the calculation of their associated masses. The SU(2) gauge group considered here represents an important first step towards ultimately studying quantum chromodynamics, the theory that describes the properties of protons, neutrons and other hadrons. Our calculations on an IBM superconducting platform utilize a variational quantum eigensolver to study both meson and baryon states, hadrons which have never been seen in a non-Abelian simulation on a quantum computer. We develop a hybrid resource-efficient approach by combining classical and quantum computing, that not only allows the study of an SU(2) gauge theory with dynamical matter fields on present-day quantum hardware, but further lays out the premises for future quantum simulations that will address currently unanswered questions in particle and nuclear physics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA