Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Br J Cancer ; 120(5): 555-564, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30765874

RESUMEN

BACKGROUND: Muscle-invasive bladder cancer (MIBC) is an aggressive neoplasm with poor prognosis, lacking effective therapeutic targets. Oncogenic dependency on members of the TAM tyrosine kinase receptor family (TYRO3, AXL, MERTK) has been reported in several cancer types, but their role in bladder cancer has never been explored. METHODS: TAM receptor expression was evaluated in two series of human bladder tumours by gene expression (TCGA and CIT series), immunohistochemistry and western blotting analyses (CIT series). The role of the different TAM receptors was assessed by loss-of-function experiments and pharmaceutical inhibition in vitro and in vivo. RESULTS: We reported a significantly higher expression of TYRO3, but not AXL or MERTK, in both non-MIBCs and MIBCs, compared to normal urothelium. Loss-of-function experiments identified a TYRO3-dependency of bladder carcinoma-derived cells both in vitro and in a mouse xenograft model, whereas AXL and MERTK depletion had only a minor impact on cell viability. Accordingly, TYRO3-dependent bladder tumour cells were sensitive to pharmacological treatment with two pan-TAM inhibitors. Finally, growth inhibition upon TYRO3 depletion relies on cell cycle inhibition and apoptosis associated with induction of tumour-suppressive signals. CONCLUSIONS: Our results provide a preclinical proof of concept for TYRO3 as a potential therapeutic target in bladder cancer.


Asunto(s)
Carcinoma de Células Transicionales/genética , Proteínas Tirosina Quinasas Receptoras/genética , Neoplasias de la Vejiga Urinaria/genética , Animales , Apoptosis/genética , Carcinoma de Células Transicionales/metabolismo , Carcinoma de Células Transicionales/patología , Línea Celular Tumoral , Supervivencia Celular , Expresión Génica , Humanos , Hylobatidae , Inmunoquímica , Técnicas In Vitro , Ratones , Terapia Molecular Dirigida , Músculo Liso/patología , Invasividad Neoplásica , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa del Receptor Axl
2.
Clin Cancer Res ; 29(21): 4449-4463, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37379429

RESUMEN

PURPOSE: Target-dependent TCB activity can result in the strong and systemic release of cytokines that may develop into cytokine release syndrome (CRS), highlighting the need to understand and prevent this complex clinical syndrome. EXPERIMENTAL DESIGN: We explored the cellular and molecular players involved in TCB-mediated cytokine release by single-cell RNA-sequencing of whole blood treated with CD20-TCB together with bulk RNA-sequencing of endothelial cells exposed to TCB-induced cytokine release. We used the in vitro whole blood assay and an in vivo DLBCL model in immunocompetent humanized mice to assess the effects of dexamethasone, anti-TNFα, anti-IL6R, anti-IL1R, and inflammasome inhibition, on TCB-mediated cytokine release and antitumor activity. RESULTS: Activated T cells release TNFα, IFNγ, IL2, IL8, and MIP-1ß, which rapidly activate monocytes, neutrophils, DCs, and NKs along with surrounding T cells to amplify the cascade further, leading to TNFα, IL8, IL6, IL1ß, MCP-1, MIP-1α, MIP-1ß, and IP-10 release. Endothelial cells contribute to IL6 and IL1ß release and at the same time release several chemokines (MCP-1, IP-10, MIP-1α, and MIP-1ß). Dexamethasone and TNFα blockade efficiently reduced CD20-TCB-mediated cytokine release whereas IL6R blockade, inflammasome inhibition, and IL1R blockade induced a less pronounced effect. Dexamethasone, IL6R blockade, IL1R blockade, and the inflammasome inhibitor did not interfere with CD20-TCB activity, in contrast to TNFα blockade, which partially inhibited antitumor activity. CONCLUSIONS: Our work sheds new light on the cellular and molecular players involved in cytokine release driven by TCBs and provides a rationale for the prevention of CRS in patients treated with TCBs. See related commentary by Luri-Rey et al., p. 4320.


Asunto(s)
Anticuerpos Biespecíficos , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , Quimiocina CCL3 , Quimiocina CCL4 , Anticuerpos Biespecíficos/farmacología , Interleucina-8 , Quimiocina CXCL10 , Interleucina-6 , Síndrome de Liberación de Citoquinas , Células Endoteliales , Inflamasomas , Citocinas , Linfocitos T , Dexametasona/farmacología , ARN
3.
Oncoimmunology ; 11(1): 2083479, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694193

RESUMEN

T cell engaging therapies, like CAR-T cells and T cell engagers, redirect T cells toward tumor cells, facilitating the formation of a cytotoxic synapse and resulting in subsequent tumor cell killing. T cell receptor or CAR-T downstream signaling triggers a release of pro-inflammatory cytokines, which can induce a Cytokine Release Syndrome (CRS). The incidence of CRS is still hardly predictable among individuals and remains one of the major dose-limiting safety liabilities associated with on-target activity of T cell engaging therapies. This emphasizes the need to elaborate mitigation strategies, which reduce cytokine release while retaining efficacy. Here, we review pre-clinical and clinical approaches applied for the management of CRS symptoms in the context of T cell engaging therapies, highlighting the use of tyrosine kinase inhibitors as an emerging mitigation strategy. In particular, we focus on the effects of Bruton's tyrosine kinase (BTK), Src family including Lck, mammalian target of rapamycin (mTOR) and Janus tyrosine kinase (JAK) inhibitors on T cell functionality and cytokine release, to provide a rationale for their use as mitigation strategies against CRS in the context of T cell engaging therapies.


Asunto(s)
Síndrome de Liberación de Citoquinas , Receptores de Antígenos de Linfocitos T , Síndrome de Liberación de Citoquinas/etiología , Citocinas , Humanos , Linfocitos T
4.
Oncoimmunology ; 11(1): 2039432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186442

RESUMEN

T cell engagers represent a novel promising class of cancer-immunotherapies redirecting T cells to tumor cells and have some promising outcomes in the clinic. These molecules can be associated with a mode-of-action related risk of cytokine release syndrome (CRS) in patients. CRS is characterized by the rapid release of pro-inflammatory cytokines such as TNF-α, IFN-γ, IL-6 and IL-1ß and immune cell activation eliciting clinical symptoms of fever, hypoxia and hypotension. In this work, we investigated the biological mechanisms triggering and amplifying cytokine release after treatment with T cell bispecific antibodies (TCBs) employing an in vitro co-culture assay of human PBMCs or total leukocytes (PBMCs + neutrophils) and corresponding target antigen-expressing cells with four different TCBs. We identified T cells as the triggers of the TCB-mediated cytokine cascade and monocytes and neutrophils as downstream amplifier cells. Furthermore, we assessed the chronology of events by neutralization of T-cell derived cytokines. For the first time, we demonstrate the contribution of neutrophils to TCB-mediated cytokine release and confirm these findings by single-cell RNA sequencing of human whole blood incubated with a B-cell depleting TCB. This work could contribute to the construction of mechanistic models of cytokine release and definition of more specific molecular and cellular biomarkers of CRS in the context of treatment with T-cell engagers. In addition, it provides insight for the elaboration of prophylactic mitigation strategies that can reduce the occurrence of CRS and increase the therapeutic index of TCBs.


Asunto(s)
Anticuerpos Biespecíficos , Citocinas , Síndrome de Liberación de Citoquinas , Humanos , Neutrófilos , Linfocitos T
5.
J Immunother Cancer ; 10(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35064010

RESUMEN

BACKGROUND: T cell engaging therapies, like chimeric antigen receptor T cells and T cell bispecific antibodies (TCBs), efficiently redirect T cells towards tumor cells, facilitating the formation of a cytotoxic synapse and resulting in subsequent tumor cell killing, a process that is accompanied by the release of cytokines. Despite their promising efficacy in the clinic, treatment with TCBs is associated with a risk of cytokine release syndrome (CRS). The aim of this study was to identify small molecules able to mitigate cytokine release while retaining T cell-mediated tumor killing. METHODS: By screening a library of 52 Food and Drug Administration approved kinase inhibitors for their impact on T cell proliferation and cytokine release after CD3 stimulation, we identified mTOR, JAK and Src kinases inhibitors as potential candidates to modulate TCB-mediated cytokine release at pharmacologically active doses. Using an in vitro model of target cell killing by human peripheral blood mononuclear cells, we assessed the effects of mTOR, JAK and Src kinase inhibitors combined with 2+1 T cell bispecific antibodies (TCBs) including CEA-TCB and CD19-TCB on T cell activation, proliferation and target cell killing measured by flow cytometry and cytokine release measured by Luminex. The combination of mTOR, JAK and Src kinase inhibitors together with CD19-TCB was evaluated in vivo in non-tumor bearing stem cell humanized NSG mice in terms of B cell depletion and in a lymphoma patient-derived xenograft (PDX) model in humanized NSG mice in terms of antitumor efficacy. RESULTS: The effect of Src inhibitors differed from those of mTOR and JAK inhibitors with the suppression of CD19-TCB-induced tumor cell lysis in vitro, whereas mTOR and JAK inhibitors primarily affected TCB-mediated cytokine release. Importantly, we confirmed in vivo that Src, JAK and mTOR inhibitors strongly reduced CD19-TCB-induced cytokine release. In humanized NSG mice, continuous treatment with a Src inhibitor prevented CD19-TCB-mediated B cell depletion in contrast to mTOR and JAK inhibitors, which retained CD19-TCB efficacy. Ultimately, transient treatment with Src, mTOR and JAK inhibitors minimally interfered with antitumor efficacy in a lymphoma PDX model. CONCLUSIONS: Taken together, these data support further evaluation of the use of Src, JAK and mTOR inhibitors as prophylactic treatment to prevent occurrence of CRS.


Asunto(s)
Anticuerpos Biespecíficos/efectos de los fármacos , Citocinas/efectos de los fármacos , Inmunoterapia/métodos , Inhibidores de las Cinasas Janus/uso terapéutico , Inhibidores mTOR/uso terapéutico , Animales , Humanos , Inhibidores de las Cinasas Janus/farmacología , Inhibidores mTOR/farmacología , Ratones
6.
J Immunother Cancer ; 9(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34326166

RESUMEN

BACKGROUND: T cell engagers are bispecific antibodies recognizing, with one moiety, the CD3ε chain of the T cell receptor and, with the other moiety, specific tumor surface antigens. Crosslinking of CD3 upon simultaneous binding to tumor antigens triggers T cell activation, proliferation and cytokine release, leading to tumor cell killing. Treatment with T cell engagers can be associated with safety liabilities due to on-target on-tumor, on-target off-tumor cytotoxic activity and cytokine release syndrome (CRS). Tyrosine kinases such as SRC, LCK or ZAP70 are involved in downstream signaling pathways after engagement of the T cell receptor and blocking these kinases might serve to abrogate T cell activation when required (online supplemental material 1). Dasatinib was previously identified as a potent kinase inhibitor that switches off CAR T cell functionality. METHODS: Using an in vitro model of target cell killing by human peripheral blood mononuclear cells, we assessed the effects of dasatinib combined with 2+1 T cell bispecific antibodies (TCBs) including CEA-TCB, CD19-TCB or HLA-A2 WT1-TCB on T cell activation, proliferation and target cell killing measured by flow cytometry and cytokine release measured by Luminex. To determine the effective dose of dasatinib, the Incucyte system was used to monitor the kinetics of TCB-mediated target cell killing in the presence of escalating concentrations of dasatinib. Last, the effects of dasatinib were evaluated in vivo in humanized NSG mice co-treated with CD19-TCB. The count of CD20+ blood B cells was used as a readout of efficacy of TCB-mediated killing and cytokine levels were measured in the serum. RESULTS: Dasatinib concentrations above 50 nM prevented cytokine release and switched off-target cell killing, which were subsequently restored on removal of dasatinib. In addition, dasatinib prevented CD19-TCB-mediated B cell depletion in humanized NSG mice. These data confirm that dasatinib can act as a rapid and reversible on/off switch for activated T cells at pharmacologically relevant doses as they are applied in patients according to the label. CONCLUSION: Taken together, we provide evidence for the use of dasatinib as a pharmacological on/off switch to mitigate off-tumor toxicities or CRS by T cell bispecific antibodies.


Asunto(s)
Anticuerpos Biespecíficos/metabolismo , Antineoplásicos/uso terapéutico , Citocinas/metabolismo , Dasatinib/uso terapéutico , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Antineoplásicos/farmacología , Dasatinib/farmacología , Humanos , Ratones
7.
Invest Ophthalmol Vis Sci ; 59(7): 2687-2698, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29860455

RESUMEN

Purpose: To assess the efficacy of the murine first-in-class CL1-R2 monoclonal antibody (mAb) targeting human CD160 (alone or in combination with bevacizumab) by using the rabbit corneal neovascularization (CNV) model, and determine the safety and efficacy of ELB01101, a novel CL1-R2-derived humanized IgG4 mAb, in a monkey model of choroidal neovascularization (ChNV). Methods: Comparison of effect of CL1-R2, bevacizumab, or aflibercept or IgG1 (control) injections in early and late treatment schemes on evolution of VEGF- or FGF2-induced rabbit CNV was performed. In the combination setting, bevacizumab was coinjected with different doses of CL1-R2. ELB01101 or vehicle was administered intravitreally in monkeys after laser-induced ChNV. Individual laser-induced lesions were semiquantitatively graduated by using fluorescein angiography to determine leakage. Results: In the rabbit model, early and late treatments with CL1-R2 significantly decreased both area and length of CNV neovessels. The effect was as potent as produced with anti-VEGF comparators. When combined with bevacizumab, an additive effect of CL1-R2 was measured at all doses tested. In the ChNV model, on day 29, eyes treated with ELB01101 showed a statistically significant reduction in clinically relevant lesions compared to vehicle-treated eyes (∼50%; χ2 test, P = 0.032001). Conclusions: The additive effects of anti-CD160 and bevacizumab in the CNV model suggest that these compounds could act via different pathways, opening new therapeutic pathways for cotargeted or combination therapies. In the ChNV model, ELB01101 was well tolerated and prevented approximately 50% of clinically relevant lesions, validating CD160 targeting as a safe approach for treatment of retinal diseases in the most relevant animal model of wet AMD.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Antígenos CD/inmunología , Bevacizumab/uso terapéutico , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización de la Córnea/tratamiento farmacológico , Modelos Animales de Enfermedad , Receptores Inmunológicos/inmunología , Animales , Biomarcadores/metabolismo , Neovascularización Coroidal/diagnóstico , Neovascularización Coroidal/metabolismo , Neovascularización de la Córnea/diagnóstico , Neovascularización de la Córnea/metabolismo , Quimioterapia Combinada , Proteínas Ligadas a GPI/inmunología , Inyecciones Intravítreas , Macaca fascicularis , Masculino , Conejos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
8.
MAbs ; 6(2): 533-46, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24492308

RESUMEN

The humanized monoclonal antibody H27K15 specifically targets human CD115, a type III tyrosine kinase receptor involved in multiple cancers and inflammatory diseases. Binding of H27K15 to hCD115 expressing cells inhibits the functional effect of colony-stimulating factor-1 (CSF-1), in a non-competitive manner. Both homology modeling and docking programs were used here to model the human CD115 extracellular domains, the H27K15 variable region and their interaction. The resulting predicted H27K15 epitope includes mainly the D1 domain in the N-terminal extracellular region of CD115 and some residues of the D2 domain. Sequence alignment with the non-binding murine CD115, enzyme-linked immunosorbent assay, nuclear magnetic resonance spectroscopy and affinity measurements by quartz crystal microbalance revealed critical residues of this epitope that are essential for H27K15 binding. A combination of computational simulations and biochemical experiments led to the design of a chimeric CD115 carrying the human epitope of H27K15 in a murine CD115 backbone that is able to bind both H27K15 as well as the murine ligands CSF-1 and IL-34. These results provide new possibilities to minutely study the functional effects of H27K15 in a transgenic mouse that would express this chimeric molecule.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Interleucinas/inmunología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Receptor de Factor Estimulante de Colonias de Macrófagos/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Biología Computacional , Ensayo de Inmunoadsorción Enzimática , Epítopos/química , Humanos , Región Variable de Inmunoglobulina/química , Factor Estimulante de Colonias de Macrófagos/inmunología , Ratones , Modelos Químicos , Unión Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología , Alineación de Secuencia
9.
Arthritis Rheumatol ; 66(11): 2989-3000, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24623505

RESUMEN

OBJECTIVE: Colony-stimulating factor 1 receptor (CSF-1R) essentially modulates monocyte proliferation, migration, and activation, which are considered important for the pathogenesis of rheumatoid arthritis (RA). We undertook this study to determine CSF-1R expression in human RA as well as the efficacy of a specific anti-CSF-1R monoclonal antibody (AFS98) in 2 different animal models of RA. METHODS: CSF-1R expression was examined in blood, synovium, and bone samples from RA patients, osteoarthritis (OA) patients, and healthy subjects. The efficacy of AFS98 was examined by clinical assessment, histology, and bone histomorphometry in collagen-induced arthritis (CIA) and serum-transfer arthritis. RESULTS: CSF-1R expression was increased in the synovium of RA patients compared to OA patients and healthy controls in fibroblast-like synoviocytes, follicular dendritic cells, macrophages, and osteoclasts. Circulating RA monocytes and neutrophils but not lymphocytes were CSF-1R+. In mice, blockade of CSF-1R abrogated cartilage damage, bone erosion, and systemic bone loss, and this was associated with the depletion of osteoclasts in both models. While blockade of CSF-1R did not affect inflammation in passive serum-transfer arthritis, it significantly reduced inflammation in CIA, and this was associated with the absence of synovial macrophages and reduced splenic CD11b+Gr-1- monocytes. CONCLUSION: CSF-1R was broadly expressed in human RA. Blockade of CSF-1R protected against bone and cartilage destruction in both mouse models and also showed significant antiinflammatory effects in the CIA model. These data provide evidence for CSF-1R as a therapeutic target in RA.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Artritis Experimental/patología , Artritis Reumatoide/patología , Huesos/patología , Cartílago/patología , Osteoartritis/patología , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Estudios de Casos y Controles , Células Dendríticas/metabolismo , Células Dendríticas/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos DBA , Persona de Mediana Edad , Monocitos/metabolismo , Monocitos/patología , Osteoartritis/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patología , Receptor de Factor Estimulante de Colonias de Macrófagos/efectos de los fármacos , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/metabolismo , Membrana Sinovial/patología
10.
PLoS One ; 8(9): e73310, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24019914

RESUMEN

Tumor progression is promoted by Tumor-Associated Macrophages (TAMs) and metastasis-induced bone destruction by osteoclasts. Both myeloid cell types depend on the CD115-CSF-1 pathway for their differentiation and function. We used 3 different mouse cancer models to study the effects of targeting cancer host myeloid cells with a monoclonal antibody (mAb) capable of blocking CSF-1 binding to murine CD115. In mice bearing sub-cutaneous EL4 tumors, which are CD115-negative, the anti-CD115 mAb depleted F4/80(+) CD163(+) M2-type TAMs and reduced tumor growth, resulting in prolonged survival. In the MMTV-PyMT mouse model, the spontaneous appearance of palpable mammary tumors was delayed when the anti-CD115 mAb was administered before malignant transition and tumors became palpable only after termination of the immunotherapy. When administered to mice already bearing established PyMT tumors, anti-CD115 treatment prolonged their survival and potentiated the effect of chemotherapy with Paclitaxel. As shown by immunohistochemistry, this therapeutic effect correlated with the depletion of F4/80(+)CD163(+) M2-polarized TAMs. In a breast cancer model of bone metastasis, the anti-CD115 mAb potently blocked the differentiation of osteoclasts and their bone destruction activity. This resulted in the inhibition of cancer-induced weight loss. CD115 thus represents a promising target for cancer immunotherapy, since a specific blocking antibody may not only inhibit the growth of a primary tumor through TAM depletion, but also metastasis-induced bone destruction through osteoclast inhibition.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Macrófagos/inmunología , Neoplasias Experimentales/terapia , Osteoclastos/inmunología , Receptor de Factor Estimulante de Colonias de Macrófagos/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Análisis de Supervivencia
11.
MAbs ; 5(5): 736-47, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23924795

RESUMEN

Cancer progression has been associated with the presence of tumor-associated M2-macrophages (M2-TAMs) able to inhibit anti-tumor immune responses. It is also often associated with metastasis-induced bone destruction mediated by osteoclasts. Both cell types are controlled by the CD115 (CSF-1R)/colony-stimulating factor-1 (CSF-1, M-CSF) pathway, making CD115 a promising target for cancer therapy. Anti-human CD115 monoclonal antibodies (mAbs) that inhibit the receptor function have been generated in a number of laboratories. These mAbs compete with CSF-1 binding to CD115, dramatically affecting monocyte survival and preventing osteoclast and macrophage differentiation, but they also block CD115/CSF-1 internalization and degradation, which could lead to potent rebound CSF-1 effects in patients after mAb treatment has ended. We thus generated and selected a non-ligand competitive anti-CD115 mAb that exerts only partial inhibitory effects on CD115 signaling without blocking the internalization or the degradation of the CD115/CSF-1 complex. This mAb, H27K15, affects monocyte survival only minimally, but downregulates osteoclast differentiation and activity. Importantly, it inhibits monocyte differentiation to CD163(+)CD64(+) M2-polarized suppressor macrophages, skewing their differentiation toward CD14(-)CD1a(+) dendritic cells (DCs). In line with this observation, H27K15 also drastically inhibits monocyte chemotactic protein-1 secretion and reduces interleukin-6 production; these two molecules are known to be involved in M2-macrophage recruitment. Thus, the non-depleting mAb H27K15 is a promising anti-tumor candidate, able to inhibit osteoclast differentiation, likely decreasing metastasis-induced osteolysis, and able to prevent M2 polarization of TAMs while inducing DCs, hence contributing to the creation of more efficient anti-tumor immune responses.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Diferenciación Celular/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Osteólisis/prevención & control , Animales , Anticuerpos Monoclonales/inmunología , Diferenciación Celular/inmunología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Células Cultivadas , Quimiocina CCL2/inmunología , Quimiocina CCL2/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Citometría de Flujo , Células HL-60 , Humanos , Interleucina-6/inmunología , Interleucina-6/metabolismo , Factor Estimulante de Colonias de Macrófagos/inmunología , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Monocitos/inmunología , Monocitos/metabolismo , Células 3T3 NIH , Osteoclastos/efectos de los fármacos , Osteoclastos/inmunología , Osteoclastos/metabolismo , Osteólisis/inmunología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/inmunología , Receptor de Factor Estimulante de Colonias de Macrófagos/inmunología , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
12.
Oncoimmunology ; 1(8): 1271-1280, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23243590

RESUMEN

Cancer immunotherapy is hampered by the immunosuppression maintained by regulatory T cells (Tregs) in tumor-bearing hosts. Stimulation of the Toll-like receptor 2 (TLR2) by Pam3Cys is known to affect Treg-mediated suppression. We found that Pam3Cys increases the proliferation of both CD4(+) effector T cells (Teffs) and Tregs co-cultured in vitro, but did not induce the proliferation of Tregs alone upon CD3 and CD28 stimulation. In a mouse model of RMA-MUC1 tumors, Pam3Cys was administered either alone or in combination with a modified vaccinia ankara (MVA)-based mucin 1 (MUC1) therapeutic vaccine. The combination of Pam3Cys with MVA-MUC1 (1) diminished splenic Treg/CD4(+) T-cell ratios to those found in tumor-free mice, (2) stimulated a specific anti-MUC1 interferon γ (IFNγ) response and (3) had a significant therapeutic effect on tumor growth and mouse survival. When CD4(+) Teffs and Tregs were isolated from Pam3Cys-treated mice, Teffs had become resistant to Treg-mediated suppression while upregulating the expression of BclL-x(L). Tregs from Pam3Cys-treated mice were fully suppressive for Teffs from naïve mice. Bcl-x(L) was induced by Pam3Cys with different kinetics in Tregs and Teffs. Teff from Pam3Cys-treated mice produced increased levels of Th1 and Th2-type cytokines and an interleukin (IL)-6-dependent secretion of IL-17 was observed in Teff:Treg co-cultures, suggesting that TLR2 stimulation had skewed the immune response toward a Th17 profile. Our results show for the first time that in a tumor-bearing host, TLR2 stimulation with Pam3Cys affects both Tregs and Teffs, protects Teff from Treg-mediated suppression and has strong therapeutic effects when combined with an MVA-based antitumor vaccine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA