Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29439975

RESUMEN

Detailed annotation of an IncHI2 plasmid, pSTM6-275, from Salmonella enterica serotype 1,4,5,12:i:- strain TW-Stm6 revealed a composite structure, including antimicrobial resistance genes on mobile genetic elements. The plasmid was thermosensitive for transfer to Escherichia coli and conferred reduced susceptibility to antibiotics, copper sulfate, and silver nitrate. Metal ion susceptibility was dependent on physiological conditions, giving an insight into the environments where this trait might confer a fitness advantage.


Asunto(s)
Metales Pesados/farmacología , Plásmidos/genética , Salmonella enterica/efectos de los fármacos , Salmonella enterica/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Integrones/genética , Pruebas de Sensibilidad Microbiana
2.
Microorganisms ; 9(10)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34683421

RESUMEN

Two distinct isolates of the facultative parasite, Tetrahymena rostrata were compared, identifying and utilising markers that are useful for studying clonal variation within the species were identified and utilised. The sequences of mitochondrial genomes and several nuclear genes were determined using Illumina short read sequencing. The two T. rostrata isolates had similar morphology. The linear mitogenomes had the gene content and organisation typical of the Tetrahymena genus, comprising 8 tRNA genes, 6 ribosomal RNA genes and 45 protein coding sequences (CDS), twenty-two of which had known function. The two isolates had nucleotide identity within common nuclear markers encoded within the histone H3 and H4 and small subunit ribosomal RNA genes and differed by only 2-4 nucleotides in a region of the characterised actin genes. Variation was observed in several mitochondrial genes and was used to determine intraspecies variation and may reflect the natural history of T. rostrata from different hosts or the geographic origins of the isolates.

3.
Microorganisms ; 9(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34576866

RESUMEN

Tetrahymena rostrata is a free-living ciliated protozoan and is a facultative parasite of some species of terrestrial mollusks. It is a potential biopesticide of pest slugs, such as the grey field slug, which cause considerable damage to crops. T. rostrata has several developmental forms. Homogeneous preparations of the feeding stage cells (trophonts) and excysted stage cells (theronts) were compared for their ability to infect and kill Deroceras reticulatum slugs. Theronts were more effective and remained viable and infective, even after prolonged starvation.

4.
Microorganisms ; 7(9)2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31470501

RESUMEN

Knowledge of mobile genetic elements that capture and disseminate antimicrobial resistance genes between diverse environments, particularly across human-animal boundaries, is key to understanding the role anthropogenic activities have in the evolution of antimicrobial resistance. Plasmids that circulate within the Enterobacteriaceae and the Proteobacteria more broadly are well placed to acquire resistance genes sourced from separate niche environments and provide a platform for smaller mobile elements such as IS26 to assemble these genes into large, complex genomic structures. Here, we characterised two atypical Z/I1 hybrid plasmids, pSTM32-108 and pSTM37-118, hosting antimicrobial resistance and virulence associated genes within endemic pathogen Salmonella enterica serovar Typhimurium 1,4,[5],12:i:-, sourced from Australian swine production facilities during 2013. We showed that the plasmids found in S. Typhimurium 1,4,[5],12:i:- are close relatives of two plasmids identified from Escherichia coli of human and bovine origin in Australia circa 1998. The older plasmids, pO26-CRL125 and pO111-CRL115, encoded a putative serine protease autotransporter and were host to a complex resistance region composed of a hybrid Tn21-Tn1721 mercury resistance transposon and composite IS26 transposon Tn6026. This gave a broad antimicrobial resistance profile keyed towards first generation antimicrobials used in Australian agriculture but also included a class 1 integron hosting the trimethoprim resistance gene dfrA5. Genes encoding resistance to ampicillin, trimethoprim, sulphonamides, streptomycin, aminoglycosides, tetracyclines and mercury were a feature of these plasmids. Phylogenetic analyses showed very little genetic drift in the sequences of these plasmids over the past 15 years; however, some alterations within the complex resistance regions present on each plasmid have led to the loss of various resistance genes, presumably as a result of the activity of IS26. These alterations may reflect the specific selective pressures placed on the host strains over time. Our studies suggest that these plasmids and variants of them are endemic in Australian food production systems.

5.
J Biol Chem ; 283(3): 1419-1427, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18006503

RESUMEN

Mycolic acids are major and specific lipid components of the cell envelope of mycobacteria that include the causative agents of tuberculosis and leprosy, Mycobacterium tuberculosis and Mycobacterium leprae, respectively. Subtle structural variations that are known to be crucial for both their virulence and the permeability of their cell envelope occur in mycolic acids. Among these are the introduction of cyclopropyl groups and methyl branches by mycolic acid S-adenosylmethionine-dependent methyltransferases (MA-MTs). While the functions of seven of the M. tuberculosis MA-MTs have been either established or strongly presumed nothing is known of the roles of the remaining umaA gene product and those of M. smegmatis MA-MTs. Mutants of the M. tuberculosis umaA gene and its putative M. smegmatis orthologue, MSMEG0913, were created. The lipid extracts of the resulting mutants were analyzed in detail using a combination of analytical techniques such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and proton nuclear magnetic resonance spectroscopy, and chemical degradation methods. The M. smegmatis mutants no longer synthesized subtypes of mycolates containing a methyl branch adjacent to either trans cyclopropyl group or trans double bond at the "proximal" position of both alpha- and epoxy-mycolates. Complementation with MSMEG0913, but not with umaA, fully restored the wild-type phenotype in M. smegmatis. Consistently, no modification was observed in the structures of mycolic acids produced by the M. tuberculosis umaA mutant. These data proved that despite their synteny and high similarity umaA and MSMEG0913 are not functionally orthologous.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metiltransferasas/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Activación Enzimática , Compuestos Epoxi/aislamiento & purificación , Ésteres/aislamiento & purificación , Prueba de Complementación Genética , Espectroscopía de Resonancia Magnética , Mutación/genética , Ácidos Micólicos/química , Ácidos Micólicos/clasificación , Ácidos Micólicos/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
J Biol Chem ; 281(14): 9011-7, 2006 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-16455649

RESUMEN

All species of Mycobacteria synthesize distinctive cell walls that are rich in phosphatidylinositol mannosides (PIMs), lipomannan (LM), and lipoarabinomannan (LAM). PIM glycolipids, having 2-4 mannose residues, can either be channeled into polar PIM species (with 6 Man residues) or hypermannosylated to form LM and LAM. In this study, we have identified a Mycobacterium smegmatis gene, termed lpqW, that is required for the conversion of PIMs to LAM and is highly conserved in all mycobacteria. A transposon mutant, Myco481, containing an insertion near the 3' end of lpqW exhibited altered colony morphology on complex agar medium. This mutant was unstable and was consistently overgrown by a second mutant, represented by Myco481.1, that had normal growth and colony characteristics. Biochemical analysis and metabolic labeling studies showed that Myco481 synthesized the complete spectrum of apolar and polar PIMs but was unable to make LAM. LAM biosynthesis was restored to near wild type levels in Myco481.1. However, this mutant was unable to synthesize the major polar PIM (AcPIM6) and accumulated a smaller intermediate, AcPIM4. Targeted disruption of the lpqW gene and complementation of the initial Myco481 mutant with the wild type gene confirmed that the phenotype of this mutant was due to loss of LpqW. These studies suggest that LpqW has a role in regulating the flux of early PIM intermediates into polar PIM or LAM biosynthesis. They also suggest that AcPIM4 is the likely branch point intermediate in polar PIM and LAM biosynthesis.


Asunto(s)
Genes Bacterianos , Lipopolisacáridos/biosíntesis , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/fisiología , Fosfatidilinositoles/metabolismo , Membrana Celular/fisiología , Regulación Bacteriana de la Expresión Génica , Mutación , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/patogenicidad , Fenotipo , Virulencia
7.
J Biol Chem ; 281(35): 25143-55, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16803893

RESUMEN

Phosphatidylinositol mannosides (PIMs) are a major class of glycolipids in all mycobacteria. AcPIM2, a dimannosyl PIM, is both an end product and a precursor for polar PIMs, such as hexamannosyl PIM (AcPIM6) and the major cell wall lipoglycan, lipoarabinomannan (LAM). The mannosyltransferases that convert AcPIM2 to AcPIM6 or LAM are dependent on polyprenol-phosphate-mannose (PPM), but have not yet been characterized. Here, we identified a gene, termed pimE that is present in all mycobacteria, and is required for AcPIM6 biosynthesis. PimE was initially identified based on homology with eukaryotic PIG-M mannosyltransferases. PimE-deleted Mycobacterium smegmatis was defective in AcPIM6 synthesis, and accumulated the tetramannosyl PIM, AcPIM4. Loss of PimE had no affect on cell growth or viability, or the biosynthesis of other intracellular and cell wall glycans. However, changes in cell wall hydrophobicity and plasma membrane organization were detected, suggesting a role for AcPIM6 in the structural integrity of the cell wall and plasma membrane. These defects were corrected by ectopic expression of the pimE gene. Metabolic pulse-chase radiolabeling and cell-free PIM biosynthesis assays indicated that PimE catalyzes the alpha1,2-mannosyl transfer for the AcPIM5 synthesis. Mutation of an Asp residue in PimE that is conserved in and required for the activity of human PIG-M resulted in loss of PIM-biosynthetic activity, indicating that PimE is the catalytic component. Finally, PimE was localized to a distinct membrane fraction enriched in AcPIM4-6 biosynthesis. Taken together, PimE represents the first PPM-dependent mannosyl-transferase shown to be involved in PIM biosynthesis, where it mediates the fifth mannose transfer.


Asunto(s)
Manósidos/química , Manosiltransferasas/química , Manosiltransferasas/fisiología , Mycobacterium/metabolismo , Fosfatidilinositoles/química , Secuencia de Aminoácidos , Proliferación Celular , Pared Celular/metabolismo , Sistema Libre de Células , Genoma Bacteriano , Humanos , Manosa/química , Datos de Secuencia Molecular , Mycobacterium smegmatis/metabolismo , Fosfatos , Homología de Secuencia de Aminoácido
8.
J Biol Chem ; 280(12): 10981-7, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15634688

RESUMEN

Phosphatidylinositol (PI) is an abundant phospholipid in the cytoplasmic membrane of mycobacteria and the precursor for more complex glycolipids, such as the PI mannosides (PIMs) and lipoarabinomannan (LAM). To investigate whether the large steady-state pools of PI and apolar PIMs are required for mycobacterial growth, we have generated a Mycobacterium smegmatis inositol auxotroph by disruption of the ino1 gene. The ino1 mutant displayed wild-type growth rates and steady-state levels of PI, PIM, and LAM when grown in the presence of 1 mM inositol. The non-dividing ino1 mutant was highly resistant to inositol starvation, reflecting the slow turnover of inositol lipids in this stage. In contrast, dilution of growing or stationary-phase ino1 mutant in inositol-free medium resulted in the rapid depletion of PI and apolar PIMs. Whereas depletion of these lipids was not associated with loss of viability, subsequent depletion of polar PIMs coincided with loss of major cell wall components and cell viability. Metabolic labeling experiments confirmed that the large pools of PI and apolar PIMs were used to sustain polar PIM and LAM biosynthesis during inositol limitation. They also showed that under non-limiting conditions, PI is catabolized via lyso-PI. These data suggest that large pools of PI and apolar PIMs are not essential for membrane integrity but are required to sustain polar PIM biosynthesis, which is essential for mycobacterial growth.


Asunto(s)
Mycobacterium smegmatis/fisiología , Fosfatidilinositoles/fisiología , Inositol/metabolismo , Lipopolisacáridos/metabolismo , Manosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA