RESUMEN
Continuing our studies in the field of new heterocyclic compounds with biological interest, herein we report the synthesis and anticancer activity of new N- and S-substituted derivatives of tetracyclic pyrido[3',2' : 4,5]thieno[3,2-d]pyrimidines. In this regard, starting from the thieno[2,3-b]pyridine-2-carboxylates, the corresponding 8(9)-aminopyrido[3',2' : 4,5]thieno[3,2-d]pyrimidin-7(8)-ones, as well as chloro derivatives were obtained. Based on the latter, amino, hydrazino and S-alkyl derivatives of pyrido[3',2' : 4,5]thieno[3,2-d]pyrimidines were synthesized subsequently. The current study focuses on identifying the potential of thieno[3,2-d]pyrimidine derivatives primarily towards ATR kinase inhibition, through computational predictions, followed by synthesis and cancer cell viability studies, along with an aim to develop the core as PIKK inhibitors for cancer therapy.
Asunto(s)
Antineoplásicos , Neoplasias , Relación Estructura-Actividad , Pirimidinas/farmacología , Piridinas , Antineoplásicos/farmacologíaRESUMEN
The synthesis of new original bicyclic pyridine-based hybrids linked to the 1,2,3-triazole unit was described via a click reaction. The anticonvulsant activity and some psychotropic properties of the new compounds were evaluated. The biological assays demonstrated that some of the studied compounds showed high anticonvulsant and psychotropic properties. The five most active compounds (7a, d, g, j, and m) contain a pyrano [3,4-c]pyridine cycle with a methyl group in the pyridine ring in their structures. Furthermore, molecular docking studies were performed, and their results are in agreement with experimental data.
RESUMEN
In this paper we describe an efficient method for the synthesis of new heterocyclic systems: furo[2,3-c]-2,7-naphthyridines 6, as well as a new method for the preparation of 1,3-diamino-2,7-naphthyridines 11. For the first time, a Smiles rearrangement was carried out in the 2,7-naphthyridine series, thus gaining the opportunity to synthesize 1-amino-3-oxo-2,7-naphthyridines 4, which are the starting compounds for obtaining furo[2,3-c]-2,7-naphthyridines. The cyclization of alkoxyacetamides 9 proceeds via two different processes: the expected formation of furo[2,3-c]-2,7-naphthyridines 10 and the 'unexpected' formation of 1,3-diamino-2,7-naphthyridines 11 (via a Smiles type rearrangement).
Asunto(s)
Compuestos Heterocíclicos , Naftiridinas , Ciclización , Naftiridinas/químicaRESUMEN
BACKGROUND: Neurotic disturbances, anxiety, neurosis-like disorders, and stress situations are widespread. Benzodiazepine tranquillizers have been found to be among the most effective antianxiety drugs. The pharmacological action of benzodiazepines is due to their interaction with the supra-molecular membrane GABA-a-benzodiazepine receptor complex, linked to the Cl-ionophore. Benzodiazepines enhance GABA-ergic transmission and this has led to a study of the role of GABA in anxiety. The search for anxiolytics and anticonvulsive agents has involved glutamate-ergic, 5HT-ergic substances and neuropeptides. However, each of these well-known anxiolytics, anticonvulsants and cognition enhancers (nootropics) has repeatedly been reported to have many adverse side effects, therefore there is an urgent need to search for new drugs able to restore damaged cognitive functions without causing significant adverse reactions. OBJECTIVE: Considering the relevance of epilepsy diffusion in the world, we have addressed our attention to the discovery of new drugs in this field Thus our aim is the synthesis and study of new compounds with antiepileptic (anticonvulsant) and not only, activity. METHODS: For the synthesis of compounds classical organic methods were used and developed. For the evaluation of biological activity some anticonvulsant and psychotropic methods were used. RESULTS: As a result of multistep reactions 26 new, five-membered heterocyclic systems were obtained. PASS prediction of anticonvulsant activity was performed for the whole set of the designed molecules and probability to be active Pa values were ranging from 0.275 to 0.43. The studied compounds exhibit protection against pentylenetetrazole (PTZ) seizures, anti-thiosemicarbazides effect as well as some psychotropic effect. The biological assays evidenced that some of the studied compounds showed a high anticonvulsant activity by antagonism with pentylenetetrazole. The toxicity of compounds is low and they do not induce muscle relaxation in the studied doses. According to the study of psychotropic activity it was found that the selected compounds have an activating behavior and anxiolytic effects on the models of "open field" and "elevated plus maze" (EPM). The data obtained indicate the anxiolytic (anti-anxiety) activity of the derivatives of pyrimidines, especially pronounced in compounds 6n, 6b, and 7c. The studied compounds increase the latent time of first immobilization on the model of "forced swimming" (FST) and exhibit some antidepressant effect similarly to diazepam. Docking studies revealed that compound 6k bound tightly in the active site of GABAA receptor with a value of the scoring function that estimates free energy of binding (ΔG) at -7.95 kcal/mol, while compound 6n showed the best docking score and seems to be dual inhibitor of SERT transporter as well as 5-HT1A receptor. CONCLUSIONS: Тhe selected compounds have an anticonvulsant, activating behavior and anxiolytic effects, at the same time exhibit some antidepressant effect.
Asunto(s)
Azepinas/administración & dosificación , Azepinas/síntesis química , Pirimidinas/administración & dosificación , Pirimidinas/síntesis química , Convulsiones/tratamiento farmacológico , Animales , Ansiolíticos/administración & dosificación , Ansiolíticos/síntesis química , Ansiolíticos/química , Ansiolíticos/farmacología , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/síntesis química , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Azepinas/química , Azepinas/farmacología , Modelos Animales de Enfermedad , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Pentilenotetrazol/efectos adversos , Pirimidinas/química , Pirimidinas/farmacología , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ratas , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Convulsiones/inducido químicamente , Convulsiones/fisiopatologíaRESUMEN
Continuing our research in the field of new heterocyclic compounds, herein we report on the synthesis and antitumor activity of new amino derivatives of pyrido[3',2':4,5](furo)thieno[3,2-d]pyrimidines as well as of two new heterocyclic systems: furo[2-e]imidazo[1,2-c]pyrimidine and furo[2,3-e]pyrimido[1,2-c]pyrimidine. Thus, by refluxing the 8-chloro derivatives of pyrido[3',2':4,5]thieno(furo)[3,2-d]pyrimidines with various amines, the relevant pyrido[3',2':4,5]thieno(furo)[3,2-d]pyrimidin-8-amines were obtained. Further, the cyclization of some amines under the action of phosphorus oxychloride led to the formation of new heterorings: imidazo[1,2-c]pyrimidine and pyrimido[1,2-c]pyrimidine. The possible antitumor activity of the newly synthesized compounds was evaluated in vitro. The biological tests evidenced that some of them showed pronounced antitumor activity. A study of the structure-activity relationships revealed that the compound activity depended mostly on the nature of the amine fragments. A docking analysis was also performed for the most active compounds.
Asunto(s)
Aminas/química , Aminas/síntesis química , Antineoplásicos/química , Antineoplásicos/síntesis química , Simulación del Acoplamiento Molecular , Piridinas/química , Piridinas/síntesis química , Animales , Espectroscopía de Resonancia Magnética con Carbono-13 , Chlorocebus aethiops , Células HeLa , Humanos , Espectroscopía de Protones por Resonancia Magnética , Termodinámica , Células VeroRESUMEN
Annulated thienopyrimidine derivatives attracted big interest of the scientific community due to their broad spectrum of biological activities among which are the inhibition of phosphodiesterase, antiproliferative and antimicrobial activities. As a continuation of our studies on the synthesis and biological activity of fused thieno[3,2-d]pyrimidine derivatives, the goal of this paper is the synthesis and study of the properties of compounds containing different heterocycles such as fused thieno[2,3-b]pyridine and tetrazolo[1,5-c]pyrimidine in the same molecule. Thus, starting from the ethyl 1-amino-5-isopropyl-8,8-dimethyl-8,9-dihydro-6H-pyrano[4,3-d]thieno[2,3-b]pyridine-2-carboxylate 1, efficient methods for obtaining new 8-amino-5-isopropyl-2,2-dimethyl-10-(methylthio)-1,4-dihydro-2H-pyrano[4'',3'':4',5']pyrido[3',2':4,5]thieno[3,2-d]pyrimidines 6 and thieno[2,3-e]tetrazolo[1,5-c]pyrimidine 8 are described. The spectroscopic results showed that compound 8 in the solid state is exclusively in the tetrazolo tautomeric form, while in solution an azide-tetrazole equilibrium is present 8A/T. The possible antimicrobial activity of newly synthesized compounds against some gram-positive and gram-negative bacilli strains has been evaluated. The biological tests evidenced that some of them showed promising antimicrobial activity. Two compounds showed similar activity to the one of the used reference drug. The study of structure-activity relationships revealed that the activity of a compound depends mostly on the nature of substituent R1R2. According to the predicted docking studies our compounds could be DnaG inhibitors.
Asunto(s)
Amidas/síntesis química , Antibacterianos/síntesis química , Escherichia coli/efectos de los fármacos , Piranos/síntesis química , Shigella dysenteriae/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Amidas/farmacología , Antibacterianos/farmacología , Pruebas Antimicrobianas de Difusión por Disco , Piranos/farmacología , Relación Estructura-ActividadRESUMEN
Herein, we describe the synthesis of new hybrids linked to 1,2,3- and 1,2,4-triazole units. Hybrids connected to a 1,2,3-triazole ring were synthesized using the well-known click reaction. The synthesis of the 1,2,4-triazole-based hybrids was carried out using 2-[(4-cyano-1-methyl(2-furyl)-5,6,7,8-tetrahydroisoquinolin-3-yl)oxy]acetohydrazides as starting compounds. The compounds were evaluated for their anticonvulsive activity via antagonism towards pentylenetetrazole (PTZ) - and thiosemicarbazide (TSC)-induced convulsion and maximal electroshock-induced seizure (MES). Furthermore, the most active compounds were studied for their locomotory and anxiolytic activity via the "open field" and elevated plus maze (EPM) assays. Finally, their antidepressant activity was studied via the "forced swim" method. All the hybrids displayed pentylenetetrazole antagonism, ranging from 40% to 80%, while in the TSC model, the most active compounds increased latency of thiosemicarbazide seizures to 1.9-4.65 times compared to that of the control. Some of the tested compounds exhibited a pronounced anxiolytic and antidepressant effect. Docking study demonstrated complete agreement with experimental pharmacological data. It was revealed that the most active compounds have a pyrano[3,4-c]pyridine ring in their structure.
RESUMEN
OBJECTIVES: Both pyridine and pyrano derivatives have been previously shown to possess biologically relevant activity. In this study, we report the incorporation of these two scaffolds into one molecule. METHODS: The designed 3,3-dimethyl-6-oxopyrano[3,4-c]pyridines were synthesized by the acylation of enamine under Stork conditions followed by condensation of formed ß-diketones with 2-cyanoacetamide. The structures of these compounds were confirmed by using a wide spectrum of physico-chemical methods. Their antiplatelet, anticoagulant and vasodilatory activity together with toxicity were evaluated. KEY FINDINGS: A series of 6-oxopyrano[3,4-c]pyridines 3a-j was obtained. Four of these compounds were reported for the first time. None of the tested compounds demonstrated anticoagulant effect but 8-methyl derivative (3a) was a potent antiplatelet compound with IC50 numerically twice as low as the clinically used acetylsalicylic acid. A series of further mechanistic tests showed that 3a interferes with calcium signaling. The compound is also not toxic and in addition possesses vasodilatory activity as well. CONCLUSIONS: Compound 3a is a promising inhibitor of platelet aggregation, whose mechanism of action should be studied in detail.
Asunto(s)
Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Anticoagulantes/farmacología , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/farmacología , Piridinas/farmacología , Relación Estructura-ActividadRESUMEN
BACKGROUND: From the literature it is known that many derivatives of fused thienopyrimidines and furopyrimidines possess broad spectrum of biological activity. OBJECTIVES: The current studies describe the synthesis and evaluation of antimicrobial activity of some new N-1,3-thiazol-2-ylacetamides of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines. METHODS: By cyclocondensation of ethyl 1-aminofuro(thieno)[2,3-b]pyridine-2-carboxylates 1with formamide were converted to the pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidin-7(8)-ones 2.Alkylation of compound 2 with 2-chloro-N-1,3-thiazol-2-ylacetamide led to the aimed N-1,3-thiazol-2-ylaceta-mides of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines 3. Starting from compound 2 the relevant S-alkylated derivatives of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines 6 were also synthesized. RESULTS: All the compounds showed antibacterial activity to non-resistant strains. Compounds 3a-3m showed antibacterial activity with MIC/MBC at 0.08-2.31 mg/mL/0.11-3.75 mg/mL .The two most active compounds, 3j and 6b, appeared to be more active towards MRSA than the reference drugs. Half of the tested compounds appeared to be equipotent/more potent than ketoconazole and more potent than bifonazole. The docking analysis provided useful information about the interactions occurring between the tested compounds and the different enzymes. CONCLUSION: Gram-negative and Gram-positive bacteria and fungi showed different response towards tested compounds, indicating that different substituents may lead to different modes of action or that the metabolism of some bacteria/fungi was better able to overcome the effect of the compounds or adapt to it.