Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38981605

RESUMEN

Glutamine is a critical amino acid that serves as an energy source, building block, and signaling molecule for the heart tissue and the immune system. However, the role of glutamine metabolism in regulating cardiac remodeling following myocardial infarction (MI) is unknown. In this study, we show in adult male mice that glutamine metabolism is altered both in the remote (contractile) area and in infiltrating macrophages in the infarct area after permanent left anterior descending artery occlusion. We found that metabolites related to glutamine metabolism were differentially altered in macrophages at days 1, 3, and 7 after MI using untargeted metabolomics. Glutamine metabolism in live cells was increased after MI relative to no MI controls. Gene expression in the remote area of the heart indicated a loss of glutamine metabolism. Glutamine administration improved LV function at days 1, 3, and 7 after MI, which was associated with improved contractile and metabolic gene expression. Conversely, administration of BPTES, a pharmacological inhibitor of glutaminase-1, worsened LV function after MI. Neither glutamine nor BPTES administration impacted gene expression or bioenergetics of macrophages isolated from the infarct area. Our results indicate that glutamine metabolism plays a critical role in maintaining LV contractile function following MI, and that glutamine administration improves LV function. Glutamine metabolism may also play a role in regulating macrophage function, but macrophages are not responsive to exogenous pharmacological manipulation of glutamine metabolism.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38269408

RESUMEN

Diabetes (DM) and hypertension (HTN) are major risk factors for chronic kidney injury, together accounting for >70% of end-stage renal disease. The combination of DM and HTN significantly accelerates development of renal injury; however, the underlying mechanisms of this synergy are still poorly understood. This study assessed whether mitochondria (MT) dysfunction is essential in developing renal injury in a rat model with combined DM and HTN. Type 1 DM was induced in Wistar rats by streptozotocin (STZ). HTN was induced six weeks later by inter-renal aorta constriction between the renal arteries, so that right kidneys were exposed to HTN while left kidneys were exposed to normotension. Kidneys exposed to DM or HTN alone had only mild glomerular injury and urinary albumin excretion (UAE). In contrast, kidneys exposed to DM plus 8 weeks HTN had significantly increased UAE and glomerular structural damage with reduced glomerular filtration rate. Marked increases in MT-derived reactive oxygen species (ROS) were also observed in right kidneys exposed to HTN+DM. We further tested whether treatment with MT-targeted antioxidant (MitoTEMPO) after the onset of HTN attenuates renal injury in rats with DM+HTN. Results show that kidneys in DM+AC+MitoTEMPO rats had lower UAE, less glomerular damage, and preserved MT function compared to untreated DM+AC rats. Our studies indicate that MT-derived ROS play a major role in promoting kidney dysfunction when DM is combined with HTN. Preserving MT function might be a potential therapeutic approach to halt the development of renal injury when DM coexists with HTN.

3.
Am J Physiol Renal Physiol ; 326(5): F727-F736, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38511219

RESUMEN

Although obesity is recognized as a risk factor for cardiorenal and metabolic diseases, the impact of parental obesity on the susceptibility of their offspring to renal injury at adulthood is unknown. We examined the impact of parental obesity on offspring kidney function, morphology, and markers of kidney damage after acute kidney injury (AKI). Offspring from normal (N) diet-fed C57BL/6J parents were fed either N (NN) or a high-fat (H) diet (NH) from weaning until adulthood. Offspring from obese H diet-fed parents were fed N (HN) or H diet (HH) after weaning. All offspring groups were submitted to bilateral AKI by clamping the left and right renal pedicles for 30 min. Compared with male NH and NN offspring from lean parents, male HH and HN offspring from obese parents exhibited higher kidney injury markers such as urinary, renal osteopontin, plasma creatinine, urinary albumin excretion, and neutrophil gelatinase-associated lipocalin (NGAL) levels, and worse histological injury score at 22 wk of age. Only albumin excretion and NGAL were elevated in female HH offspring from obese parents compared with lean and obese offspring from lean parents. We also found an increased mortality rate and worse kidney injury scores after AKI in male offspring from obese parents, regardless of the diet consumed after weaning. Female offspring were protected from major kidney injury after AKI. These results indicate that parental obesity leads to increased kidney injury in their offspring after ischemia-reperfusion in a sex-dependent manner, even when their offspring remain lean.NEW & NOTEWORTHY Offspring from obese parents are more susceptible to kidney injury and worse outcomes following an acute ischemia-reperfusion insult. Male, but not female, offspring from obese parents exhibit increased blood pressure early in life. Female offspring are partially protected against major kidney injury induced by ischemia-reperfusion.


Asunto(s)
Lesión Renal Aguda , Riñón , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Masculino , Femenino , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Lesión Renal Aguda/patología , Riñón/fisiopatología , Riñón/patología , Riñón/metabolismo , Factores Sexuales , Obesidad/complicaciones , Obesidad/fisiopatología , Dieta Alta en Grasa , Embarazo , Lipocalina 2/metabolismo , Obesidad Materna/metabolismo , Obesidad Materna/complicaciones , Obesidad Materna/fisiopatología , Efectos Tardíos de la Exposición Prenatal , Ratones , Factores de Riesgo , Modelos Animales de Enfermedad , Biomarcadores/sangre
4.
Curr Hypertens Rep ; 26(3): 119-130, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37982994

RESUMEN

PURPOSE OF REVIEW: This review aims to explore the underlying mechanisms that lead to hypertension in glomerular diseases and the advancements in treatment strategies and to provide clinicians with valuable insights into the pathophysiological mechanisms and evidence-based therapeutic approaches for managing hypertension in patients with glomerular diseases. RECENT FINDINGS: In recent years, there have been remarkable advancements in our understanding of the immune and non-immune mechanisms that are involved in the pathogenesis of hypertension in glomerular diseases. Furthermore, this review will encompass the latest data on management strategies, including RAAS inhibition, endothelin receptor blockers, SGLT2 inhibitors, and immune-based therapies. Hypertension (HTN) and cardiovascular diseases are leading causes of mortality in glomerular diseases. The latter are intricately related with hypertension and share common pathophysiological mechanisms. Hypertension in glomerular disease represents a complex and multifaceted interplay between kidney dysfunction, immune-mediated, and non-immune-mediated pathology. Understanding the complex mechanisms involved in this relationship has evolved significantly over the years, shedding light on the pathophysiological processes underlying the development and progression of glomerular disease-associated HTN, and is crucial for developing effective therapeutic strategies and improving patients' outcomes.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Enfermedades Renales , Humanos , Antihipertensivos/uso terapéutico , Enfermedades Renales/terapia , Enfermedades Renales/etiología , Enfermedades Cardiovasculares/tratamiento farmacológico
5.
Am J Physiol Regul Integr Comp Physiol ; 325(4): R401-R410, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37519251

RESUMEN

We examined potential sex differences in appetite and blood pressure (BP) responses to melanocortin-4 receptor (MC4R) blockade in offspring from lean and obese parents. Offspring from normal (N) diet-fed parents were fed N (NN) or high-fat (H) diets (NH) from weaning until adulthood. Offspring from obese H diet-fed parents were also fed N (HN) or H diets (HH). Adult male and female offspring were implanted with BP telemetry probes and intracerebroventricular cannulas to infuse MC4R antagonist or vehicle. Infusion of the MC4R antagonist SHU-9119 (1 nmol/h) for 7 days caused larger increases in calorie intake and body weight in obese compared with lean offspring. In male offspring, HH and HN groups exhibited higher baseline BP compared with NN and NH, and HH showed a greater reduction in BP during SHU-9119 infusion. In female offspring, HH also showed higher baseline BP and greater reduction in BP during MC4R blockade. SHU-9119 reduced heart rate in all groups, but reductions were more pronounced in offspring from lean parents. Combined α and ß-adrenergic blockade reduced BP more in male HH offspring compared with NN controls. Losartan reduced BP more in male NH, HN, and HH offspring compared with NN controls. Losartan and α- and ß-adrenergic blockade reduced BP similarly in all female groups. These results suggest that endogenous MC4R activity contributes to elevated BP in obese offspring from obese parents. Our findings also indicate important sex differences in the mechanisms of BP control in male and female offspring of obese parents.


Asunto(s)
Hipertensión , Receptor de Melanocortina Tipo 4 , Femenino , Masculino , Humanos , Adulto , Presión Sanguínea/fisiología , Receptor de Melanocortina Tipo 4/genética , Losartán , Caracteres Sexuales , Obesidad , Aumento de Peso , Adrenérgicos
6.
Am J Physiol Renal Physiol ; 322(1): F76-F88, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34866402

RESUMEN

Diabetes mellitus (DM) and hypertension (HTN) are major risk factors for chronic kidney injury, together accounting for >70% of end-stage renal disease. In this study, we assessed whether DM and HTN interact synergistically to promote kidney dysfunction and whether transient receptor potential cation channel 6 (TRPC6) contributes to this synergism. In wild-type (WT; B6/129s background) and TRPC6 knockout (KO) mice, DM was induced by streptozotocin injection to increase fasting glucose levels to 250-350 mg/dL. HTN was induced by aorta constriction (AC) between the renal arteries. AC increased blood pressure (BP) by ∼25 mmHg in the right kidney (above AC), whereas BP in the left kidney (below AC) returned to near normal after 8 wk, with both kidneys exposed to the same levels of blood glucose, circulating hormones, and neural influences. Kidneys of WT mice exposed to DM or HTN alone had only mild glomerular injury and urinary albumin excretion. In contrast, WT kidneys exposed to DM plus HTN (WT-DM + AC mice) for 8 wk had much greater increases in albumin excretion and histological injury. Marked increased apoptosis was also observed in the right kidneys of WT-DM + AC mice. In contrast, in TRPC6 KO mice with DM + AC, right kidneys exposed to the same levels of high BP and high glucose had lower albumin excretion and less glomerular damage and apoptotic cell injury compared with right kidneys of WT-DM + AC mice. Our results suggest that TRPC6 may contribute to the interaction of DM and HTN to promote kidney dysfunction and apoptotic cell injury.NEW & NOTEWORTHY A major new finding of this study is that the combination of moderate diabetes and hypertension promoted marked renal dysfunction, albuminuria, and apoptotic cell injury, and that these effects were greatly ameliorated by transient receptor potential cation channel 6 deficiency. These results suggest that transient receptor potential cation channel 6 may play an important role in contributing to the interaction of diabetes and hypertension to promote kidney injury.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Tasa de Filtración Glomerular , Hipertensión/complicaciones , Riñón/metabolismo , Insuficiencia Renal Crónica/etiología , Canal Catiónico TRPC6/metabolismo , Albuminuria/metabolismo , Albuminuria/patología , Albuminuria/fisiopatología , Animales , Glucemia/metabolismo , Presión Sanguínea , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatología , Femenino , Hipertensión/metabolismo , Riñón/patología , Riñón/fisiopatología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/fisiopatología , Factores de Riesgo , Canal Catiónico TRPC6/genética
7.
Am J Physiol Regul Integr Comp Physiol ; 323(1): R81-R97, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35537100

RESUMEN

Transient receptor potential cation channel 6 (TRPC6), a member of the TRPC family, is expressed in the hypothalamus and modulates cell Ca2+ influx. However, the role of TRPC6 in controlling metabolic and cardiovascular functions under normal conditions has not been previously determined. Thus the impacts of TRPC6 deletion on energy balance, metabolic, and cardiovascular regulation as well as the anorexic responses to leptin and melanocortin 3/4 receptor (MC3/4R) activation were investigated in this study. Extensive cardiometabolic phenotyping was conducted in male and female TRPC6 knockout (KO) and control mice from 6 to 24 wk of age to assess mechanisms by which TRPC6 influences regulation of energy balance and blood pressure (BP). We found that TRPC6 KO mice are heavier with greater adiposity, are hyperphagic, and have reduced energy expenditure, impaired glucose tolerance, hyperinsulinemia, and increased liver fat compared with controls. TRPC6 KO mice also have smaller brains, reduced proopiomelanocortin mRNA levels in the hypothalamus, and impaired anorexic response to leptin but not to MC3/4R activation. BP and heart rate, assessed by telemetry, were similar in TRPC6 KO and control mice, and BP responses to air-jet stress were attenuated in TRPC6 KO mice despite increased body weight and metabolic disorders that normally raise BP and increase BP responses to stress. Our results provide evidence for a novel and important role of TRPC6 in controlling energy balance, adiposity, and glucose homeostasis, which suggests that normal TRPC6 function may be necessary to link weight gain and hyperleptinemia with BP responses to acute stress.


Asunto(s)
Canal Catiónico TRPC6 , Aumento de Peso , Animales , Anorexia , Presión Sanguínea , Peso Corporal , Ingestión de Alimentos/fisiología , Femenino , Leptina/metabolismo , Masculino , Ratones , Ratones Noqueados , Obesidad/metabolismo , Canal Catiónico TRPC6/deficiencia , Canal Catiónico TRPC6/metabolismo , Aumento de Peso/fisiología
8.
Am J Physiol Regul Integr Comp Physiol ; 322(5): R421-R433, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35318854

RESUMEN

We examined the impact of parental obesity on offspring blood pressure (BP) regulation and cardiovascular responses to stress. Offspring from normal (N) diet-fed C57BL/6J parents were fed either N (NN) or a high-fat (H) diet (NH) from weaning until adulthood. Offspring from obese H diet-fed parents were also fed N (HN) or H diet (HH). Body weight, calorie intake, and fat mass were measured at 22 wk of age when cardiovascular phenotyping was performed. Male and female HH offspring were 15% heavier than NH and 70% heavier than NN offspring. Male HH and HN offspring had elevated BP (121 ± 2 and 115 ± 1 mmHg, by telemetry) compared with male NH and NN offspring (108 ± 6 and 107 ± 3 mmHg, respectively) and augmented BP responses to angiotensin II, losartan, and hexamethonium. Male HH and HN offspring also showed increased BP responses to air-jet stress (37 ± 2 and 38 ± 2 mmHg) compared with only 24 ± 3 and 25 ± 3 mmHg in NH and NN offspring. Baseline heart rate (HR) and HR responses to air-jet stress were similar among groups. In females, BP and cardiovascular responses to stress were similar among all offspring. Male H diet-fed offspring from obese H diet-fed purinoreceptor 7-deficient (HH-P2X7R-KO) parents had normal BP that was similar to control NN-P2X7R-KO offspring from lean parents. These results indicate that parental obesity leads to increased BP and augmented BP responses to stress in their offspring in a sex-dependent manner, and the impact of parental obesity on male offspring BP regulation is markedly attenuated in P2X7R-KO mice.


Asunto(s)
Hipertensión , Caracteres Sexuales , Animales , Presión Sanguínea/fisiología , Dieta Alta en Grasa/efectos adversos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad
9.
Circ Res ; 126(6): 789-806, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32163341

RESUMEN

Obesity and hypertension, which often coexist, are major risk factors for heart failure and are characterized by chronic, low-grade inflammation, which promotes adverse cardiac remodeling. While macrophages play a key role in cardiac remodeling, dysregulation of macrophage polarization between the proinflammatory M1 and anti-inflammatory M2 phenotypes promotes excessive inflammation and cardiac injury. Metabolic shifting between glycolysis and mitochondrial oxidative phosphorylation has been implicated in macrophage polarization. M1 macrophages primarily rely on glycolysis, whereas M2 macrophages rely on the tricarboxylic acid cycle and oxidative phosphorylation; thus, factors that affect macrophage metabolism may disrupt M1/M2 homeostasis and exacerbate inflammation. The mechanisms by which obesity and hypertension may synergistically induce macrophage metabolic dysfunction, particularly during cardiac remodeling, are not fully understood. We propose that obesity and hypertension induce M1 macrophage polarization via mechanisms that directly target macrophage metabolism, including changes in circulating glucose and fatty acid substrates, lipotoxicity, and tissue hypoxia. We discuss canonical and novel proinflammatory roles of macrophages during obesity-hypertension-induced cardiac injury, including diastolic dysfunction and impaired calcium handling. Finally, we discuss the current status of potential therapies to target macrophage metabolism during heart failure, including antidiabetic therapies, anti-inflammatory therapies, and novel immunometabolic agents.


Asunto(s)
Corazón/fisiopatología , Hipertensión/inmunología , Activación de Macrófagos , Obesidad/inmunología , Animales , Humanos , Hipertensión/fisiopatología , Obesidad/fisiopatología
10.
J Mol Cell Cardiol ; 158: 38-48, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34023353

RESUMEN

Myocardial infarction (MI) is one of the leading causes of mortality and cardiovascular disease worldwide. MI is characterized by a substantial inflammatory response in the infarcted left ventricle (LV), followed by transition of quiescent fibroblasts to active myofibroblasts, which deposit collagen to form the reparative scar. Metabolic shifting between glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) is an important mechanism by which these cell types transition towards reparative phenotypes. Thus, we hypothesized that dimethyl fumarate (DMF), a clinically approved anti-inflammatory agent with metabolic actions, would improve post-MI remodeling via modulation of macrophage and fibroblast metabolism. Adult male C57BL/6J mice were treated with DMF (10 mg/kg) for 3-7 days after MI. DMF attenuated LV infarct and non-infarct wall thinning at 3 and 7 days post-MI, and decreased LV dilation and pulmonary congestion at day 7. DMF improved LV infarct collagen deposition, myofibroblast activation, and angiogenesis at day 7. DMF also decreased pro-inflammatory cytokine expression (Tnf) 3 days after MI, and decreased inflammatory markers in macrophages isolated from the infarcted heart (Hif1a, Il1b). In fibroblasts extracted from the infarcted heart at day 3, RNA-Seq analysis demonstrated that DMF promoted an anti-inflammatory/pro-reparative phenotype. By Seahorse analysis, DMF did not affect glycolysis in either macrophages or fibroblasts at day 3, but enhanced macrophage OXPHOS while impairing fibroblast OXPHOS. Our results indicate that DMF differentially affects macrophage and fibroblast metabolism, and promotes anti-inflammatory/pro-reparative actions. In conclusion, targeting cellular metabolism in the infarcted heart may be a promising therapeutic strategy.


Asunto(s)
Antiinflamatorios/administración & dosificación , Dimetilfumarato/administración & dosificación , Ventrículos Cardíacos/efectos de los fármacos , Macrófagos/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Miofibroblastos/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Animales , Células Cultivadas , Colágeno/metabolismo , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Modelos Animales de Enfermedad , Ventrículos Cardíacos/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
11.
Am J Physiol Heart Circ Physiol ; 321(3): H485-H495, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34296964

RESUMEN

Previous studies suggest that parental obesity may adversely impact long-term metabolic health of the offspring. We tested the hypothesis that parental (paternal + maternal) obesity impairs cardiac function in the offspring early in life. Within 1-3 days after weaning, offspring from obese rats fed a high-fat diet (HFD-Offs) and age-matched offspring from lean rats (ND-Offs) were submitted to echocardiography and cardiac catheterization for assessment of pressure-volume relationships. Then, hearts were digested and isolated cardiomyocytes were used to determine contractile function, calcium transients, proteins related to calcium signaling, and mitochondrial bioenergetics. Female and male HFD-Offs were heavier (72 ± 2 and 61 ± 4 g vs. 57 ± 2 and 49 ± 1 g), hyperglycemic (112 ± 8 and 115 ± 12 mg/dL vs. 92 ± 10 and 96 ± 8 mg/dL) with higher plasma insulin and leptin concentrations compared with female and male ND-Offs. When compared with male controls, male HFD-Offs exhibited similar systolic function but impaired diastolic function as indicated by increased IVRT (22 ± 1 vs. 17 ± 1 ms), E/E' ratio (29 ± 2 vs. 23 ± 1), and tau (5.7 ± 0.2 vs. 4.8 ± 0.2). The impaired diastolic function was associated with reduced resting free Ca2+ levels and phospholamban protein expression, increased activated matrix metalloproteinase 2, and reduced SIRT3 protein expression, mitochondrial ATP reserve, and ATP-linked respiration. These results indicate that male and female Offs from obese parents have multiple metabolic abnormalities early in life (1-3 days after weaning) and that male, but not female, Offs have impaired diastolic function as well as reductions in cardiac SIRT3, resting free Ca2+ levels, and mitochondrial biogenesis.NEW & NOTEWORTHY Parental obesity contributes to diastolic dysfunction in young offspring (1-3 days after weaning) in a sex-dependent manner, as well as reduced cardiac SIRT3 expression and altered mitochondrial bioenergetics, resting Ca2+ levels, and reduced phospholamban protein levels.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Obesidad Materna/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Sirtuinas/genética , Animales , Señalización del Calcio , Células Cultivadas , Epigénesis Genética , Femenino , Leptina/sangre , Masculino , Contracción Miocárdica , Miocitos Cardíacos/fisiología , Obesidad Materna/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Ratas , Ratas Sprague-Dawley , Factores Sexuales , Sirtuinas/metabolismo
12.
Am J Physiol Regul Integr Comp Physiol ; 320(2): R173-R181, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33206555

RESUMEN

Previous studies using male rodents showed the adipocyte-derived hormone leptin acts in the brain to regulate cardiovascular function, energy balance, and glucose homeostasis. The importance of sex differences in cardiometabolic responses to leptin, however, is still unclear. We examined potential sex differences in leptin's chronic central nervous system (CNS)-mediated actions on blood pressure (BP), heart rate (HR), appetite, and glucose homeostasis in normal and type 1 diabetic rats. Female and male Sprague-Dawley (SD) rats were instrumented with intracerebroventricular cannulas for continuous 7-day leptin infusion (15 µg/day), and BP and HR were measured by telemetry 24 h/day. At baseline, females had lower mean arterial pressure (MAP) (96 ± 3 vs. 104 ± 4 mmHg, P < 0.05) but higher HR (375 ± 5 vs. 335 ± 5 beats/min, P < 0.05) compared with males. After leptin treatment, we observed similar increases in BP (∼3 mmHg) and HR (∼25 beats/min) in both sexes. Females had significantly lower body weight (BW, 283 ± 2 vs. 417 ± 7 g, P < 0.05) and caloric intake (162 ± 20 vs. 192 ± 9 kcal/kg of body wt, P < 0.05) compared with males, and leptin infusion reduced BW (-10%) and caloric intake (-62%) similarly in both sexes. In rats with streptozotocin-induced diabetes (n = 5/sex), intracerebroventricular leptin treatment for 7 days completely normalized glucose levels. The same dose of leptin administered intraperitoneally did not alter MAP, HR, glucose levels, or caloric intake in normal or diabetic rats. These results show that leptin's CNS effects on BP, HR, glucose regulation, and energy homeostasis are similar in male and female rats. Therefore, our results provide no evidence for sex differences in leptin's brain-mediated cardiovascular or metabolic actions.


Asunto(s)
Apetito/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Glucosa/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Homeostasis/efectos de los fármacos , Leptina/farmacología , Animales , Diabetes Mellitus Experimental , Femenino , Inyecciones Intraventriculares , Leptina/administración & dosificación , Masculino , Ratas , Ratas Sprague-Dawley , Factores Sexuales
13.
Circ Res ; 124(7): 1071-1093, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30920919

RESUMEN

Despite availability of effective drugs for hypertension therapy, significant numbers of hypertensive patients fail to achieve recommended blood pressure levels on ≥3 antihypertensive drugs of different classes. These individuals have a high prevalence of adverse cardiovascular events and are defined as having resistant hypertension (RHT) although nonadherence to prescribed antihypertensive medications is common in patients with apparent RHT. Furthermore, apparent and true RHT often display increased sympathetic activity. Based on these findings, technology was developed to treat RHT by suppressing sympathetic activity with electrical stimulation of the carotid baroreflex and catheter-based renal denervation (RDN). Over the last 15 years, experimental and clinical studies have provided better understanding of the physiological mechanisms that account for blood pressure lowering with baroreflex activation and RDN and, in so doing, have provided insight into which patients in this heterogeneous hypertensive population are most likely to respond favorably to these device-based therapies. Experimental studies have also played a role in modifying device technology after early clinical trials failed to meet key endpoints for safety and efficacy. At the same time, these studies have exposed potential differences between baroreflex activation and RDN and common challenges that will likely impact antihypertensive treatment and clinical outcomes in patients with RHT. In this review, we emphasize physiological studies that provide mechanistic insights into blood pressure lowering with baroreflex activation and RDN in the context of progression of clinical studies, which are now at a critical point in determining their fate in RHT management.


Asunto(s)
Barorreflejo , Presión Sanguínea , Ablación por Catéter/instrumentación , Resistencia a Medicamentos , Terapia por Estimulación Eléctrica/instrumentación , Hipertensión/terapia , Neuroestimuladores Implantables , Simpatectomía/instrumentación , Sistema Nervioso Simpático/fisiopatología , Animales , Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Ablación por Catéter/efectos adversos , Terapia por Estimulación Eléctrica/efectos adversos , Diseño de Equipo , Humanos , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hipertensión/fisiopatología , Simpatectomía/efectos adversos , Resultado del Tratamiento
14.
Am J Physiol Regul Integr Comp Physiol ; 319(4): R476-R484, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877243

RESUMEN

Changes in cardiomyocyte metabolism have been heavily implicated in cardiac injury and heart failure (HF). However, there is emerging evidence that metabolism in nonmyocyte populations, including cardiac fibroblasts, immune cells, and endothelial cells, plays an important role in cardiac remodeling and adaptation to injury. Here, we discuss recent advances and insights into nonmyocyte metabolism in the healthy and injured heart. Metabolic switching from mitochondrial oxidative phosphorylation to glycolysis is critical for immune cell (macrophage and T lymphocyte) and fibroblast phenotypic switching in the inflamed and fibrotic heart. On the other hand, cardiac endothelial cells are heavily reliant on glycolytic metabolism, and thus impairments in glycolytic metabolism underlie endothelial cell dysfunction. Finally, we review current and ongoing metabolic therapies for HF and the potential implications for nonmyocyte metabolism.


Asunto(s)
Remodelación Atrial/fisiología , Fibroblastos/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Remodelación Ventricular/fisiología , Células Endoteliales/metabolismo , Glucólisis/fisiología , Humanos , Fosforilación Oxidativa
15.
Curr Diab Rep ; 20(7): 29, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32451760

RESUMEN

PURPOSE OF REVIEW: In this brief review, we highlight studies that have contributed to our current understanding of glucose homeostasis by the central nervous system (CNS) leptin-melanocortin system, particularly proopiomelanocortin neurons and melanocortin-4 receptors (MC4R). RECENT FINDINGS: Leptin deficiency is associated with insulin resistance and impaired glucose metabolism whereas leptin administration improves tissue glucose uptake/oxidation and reduces hepatic glucose output. These antidiabetic effects of leptin have been demonstrated in experimental animals and humans, even when circulating insulin levels are barely detectable. Recent evidence suggests that these antidiabetic actions of leptin are mediated, in large part, by stimulation of leptin receptors (LRs) in the CNS and require activation of proopiomelanocortin (POMC) neurons and MC4R. These chronic antidiabetic effects of the CNS leptin-melanocortin system appear to be independent of autonomic nervous system and pituitary-thyroid-adrenal (PTA) axis mechanisms. The powerful antidiabetic actions of the CNS leptin-melanocortin system are capable of normalizing plasma glucose even in the absence of insulin and involve interactions of multiple neuronal populations and intracellular signaling pathways. Although the links between the CNS leptin-melanocortin system and its chronic effects on peripheral tissue glucose metabolism are still uncertain, they are independent of insulin action, activation of the autonomic nervous system, or the PTA axis. Unraveling the pathways that contribute to the powerful antidiabetic effects of the CNS leptin-melanocortin system may provide novel therapeutic approaches for diabetes mellitus.


Asunto(s)
Insulina , Leptina , Animales , Glucosa , Homeostasis , Humanos , Melanocortinas , Receptores de Leptina
16.
Curr Hypertens Rep ; 22(2): 15, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32016622

RESUMEN

PURPOSE OF REVIEW: To discuss the importance of synergistic interactions of diabetes mellitus (DM) and hypertension (HT) in causing chronic kidney disease and the potential molecular mechanisms involved. RECENT FINDINGS: DM and HT are the two most important risk factors for chronic kidney disease (CKD) and development of end-stage renal disease (ESRD). The combination of HT and DM may synergistically promote the progression of renal injury through mechanisms that have not been fully elucidated. Hyperglycemia and other metabolic changes in DM initiate endoplasmic reticulum (ER) stress and mitochondrial (MT) adaptation in different types of glomerular cells. These adaptations appear to make the cells more vulnerable to HT-induced mechanical stress. Excessive activation of mechanosensors, possibly via transient receptor potential cation channel subfamily C member 6 (TRPC6), may lead to impaired calcium (Ca2+) homeostasis and further exacerbate ER stress and MT dysfunction promoting cellular apoptosis and glomerular injury. The synergistic effects of HT and DM to promote kidney injury may be mediated by increased intraglomerular pressure. Chronic activation of mechanotransduction signaling may amplify metabolic effects of DM causing cellular injury through a vicious cycle of impaired Ca2+ homeostasis, mitochondrial dysfunction, and ER stress.


Asunto(s)
Diabetes Mellitus , Hipertensión , Mitocondrias , Insuficiencia Renal Crónica , Humanos , Mecanotransducción Celular , Mitocondrias/fisiología
17.
Am J Physiol Regul Integr Comp Physiol ; 317(4): R552-R562, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31411897

RESUMEN

The main goal of this study was to compare the impact of total body leptin deficiency with neuronal-specific leptin receptor (LR) deletion on metabolic and cardiovascular regulation. Liver fat, diacylglycerol acyltransferase-2 (DGTA2), and CD36 protein content were measured in wild-type (WT), nervous system LR-deficient (LR/Nestin-Cre), and leptin deficient (ob/ob) mice. Blood pressure (BP) and heart rate (HR) were recorded by telemetry, and motor activity (MA) and oxygen consumption (V̇o2) were monitored at 24 wk of age. Female and male LR/Nestin-Cre and ob/ob mice were heavier than WT mice (62 ± 5 and 61 ± 3 vs. 31 ± 1 g) and hyperphagic (6.2 ± 0.5 and 6.1 ± 0.7 vs. 3.5 ± 1.0 g/day), with reduced V̇o2 (27 ± 1 and 33 ± 1 vs 49 ± 3 ml·kg-1·min-1) and decreased MA (3 ± 1 and 7 ± 2 vs 676 ± 105 cm/h). They were also hyperinsulinemic and hyperglycemic compared with WT mice. LR/Nestin-Cre mice had high levels of plasma leptin, while ob/ob mice had undetectable leptin levels. Despite comparable obesity, LR/Nestin-Cre mice had lower liver fat content, DGTA2, and CD36 protein levels than ob/ob mice. Male WT, LR/Nestin-Cre, and ob/ob mice exhibited similar BP (111 ± 3, 110 ± 1 and 109 ± 2 mmHg). Female LR/Nestin-Cre and ob/ob mice, however, had higher BP than WT females despite similar metabolic phenotypes compared with male LR/Nestin-Cre and ob/ob mice. These results indicate that although nervous system LRs play a crucial role in regulating body weight and glucose homeostasis, peripheral LRs regulate liver fat deposition. In addition, our results suggest potential sex differences in the impact of obesity on BP regulation.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Leptina/genética , Receptores de Leptina/metabolismo , Tejido Adiposo/metabolismo , Antagonistas Adrenérgicos , Aldosterona/sangre , Antagonistas de Receptores de Angiotensina/farmacología , Animales , Glucemia , Presión Sanguínea , Antígenos CD36/genética , Antígenos CD36/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Femenino , Regulación de la Expresión Génica , Frecuencia Cardíaca/fisiología , Leptina/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Obesos , Antagonistas de Receptores de Mineralocorticoides/farmacología , Receptores Adrenérgicos/metabolismo , Receptores de Leptina/genética , Estrés Fisiológico
18.
Am J Physiol Regul Integr Comp Physiol ; 316(4): R338-R351, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30673296

RESUMEN

Suppressor of cytokine signaling 3 (SOCS3) is a negative regulator of leptin signaling. We previously showed that the chronic effects of leptin on blood pressure (BP) and glucose regulation are mediated by stimulation of proopiomelanocortin (POMC) neurons. In this study we examined the importance of endogenous SOCS3 in POMC neurons in control of metabolic and cardiovascular function and potential sex differences. Male and female SOCS3flox/flox/POMC-Cre mice in which SOCS3 was selectively deleted in POMC neurons and control SOCS3flox/flox mice were studied during a control diet (CD) or a high-fat diet (HFD) and during chronic leptin infusion. Body weight was lower in male and female SOCS3flox/flox/POMC-Cre than control mice fed the CD, despite similar food intake. Male SOCS3flox/flox/POMC-Cre mice exhibited increased energy expenditure. BP and heart rate were similar in male and female SOCS3flox/flox/POMC-Cre and control mice fed the CD. HFD-fed male and female SOCS3flox/flox/POMC-Cre mice showed attenuated weight gain. HFD-induced elevations in baseline BP and BP responses to an air-jet stress test were greater in female SOCS3flox/flox/POMC-Cre than control mice. Chronic leptin infusion produced similar responses for food intake, body weight, oxygen consumption, blood glucose, BP, and heart rate in all groups. Thus SOCS3 deficiency in POMC neurons influences body weight regulation in the setting of CD and HFD and differentially affects BP and energy balance in a sex-specific manner but does not amplify the dietary, glycemic, or cardiovascular effects of leptin.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Neuronas/fisiología , Proopiomelanocortina/fisiología , Proteína 3 Supresora de la Señalización de Citocinas/fisiología , Animales , Animales Modificados Genéticamente , Dieta , Dieta Alta en Grasa , Ingestión de Alimentos , Femenino , Leptina/farmacología , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Consumo de Oxígeno/genética , Proteína 3 Supresora de la Señalización de Citocinas/deficiencia , Proteína 3 Supresora de la Señalización de Citocinas/genética , Aumento de Peso/genética
19.
Arch Biochem Biophys ; 672: 108072, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31422074

RESUMEN

Obesity is the predominant cause of non-alcoholic fatty liver disease (NAFLD), which is associated with insulin resistance and diabetes. NAFLD includes a spectrum of pathologies that starts with simple steatosis, which can progress to non-alcoholic steatohepatitis (NASH) with the commission of other factors such as the enhancement of reactive oxygen species (ROS). Biliverdin reductase A (BVRA) reduces biliverdin to the antioxidant bilirubin, which may serve to prevent NAFLD, and possibly the progression to NASH. To further understand the role of BVRA in hepatic function, we used CRISPR-Cas9 technology to target the Blvra gene in the murine hepa1c1c7 hepatocyte cell line (BVRA KO). BVRA activity and protein levels were significantly lower in BVRA KO vs. wild-type (WT) hepatocytes. Lipid accumulation under basal and serum-starved conditions was significantly (p < 0.05) higher in BVRA KO vs. WT cells. The loss of BVRA resulted in the reduction of mitochondria number, decreased expression of markers of mitochondrial biogenesis, uncoupling, oxidation, and fusion, which paralleled reduced mitochondrial oxygen consumption. BVRA KO cells exhibited increased levels of ROS generation and decreased levels of superoxide dismutase mRNA expression. In conclusion, our data demonstrate a critical role for BVRA in protecting against lipid accumulation and oxidative stress in hepatocytes, which may serve as a future therapeutic target for NAFLD and its progression to NASH.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas/genética , Hepatocitos/metabolismo , Metabolismo de los Lípidos/fisiología , Estrés Oxidativo/fisiología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Animales , Bilirrubina/metabolismo , Línea Celular , Eliminación de Gen , Técnicas de Inactivación de Genes , Ratones , Especies Reactivas de Oxígeno/metabolismo
20.
Curr Hypertens Rep ; 21(6): 46, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31028563

RESUMEN

PURPOSE OF REVIEW: To highlight the role of the brain melanocortin 4 receptor (MC4R) for sympathetic nervous system (SNS) activation in hypertension. RECENT FINDINGS: Hypertension is the most significant risk factor for developing cardiovascular disease. Although excess weight gain is associated with at least two thirds of primary hypertension cases, the pathophysiological mechanisms involved remain the subject of intense investigation. Multiple studies demonstrate an important role for increased sympathetic nervous system (SNS) activity in development and maintenance of hypertension, and that the brain MC4R modulates SNS activity to thermogenic, cardiovascular, and kidney tissues. These studies also support the concept that MC4R activation is critical for obesity-induced hypertension as well as other forms of hypertension associated with increased SNS activity. MC4R is a potential target for antiobesity therapy, although there are challenges in using MC4R agonists to induce weight loss without evoking increases in SNS activity.


Asunto(s)
Hipertensión/fisiopatología , Obesidad/fisiopatología , Receptor de Melanocortina Tipo 4/fisiología , Sistema Nervioso Simpático/fisiopatología , Apetito/fisiología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Metabolismo Energético/fisiología , Humanos , Hipertensión/etiología , Obesidad/complicaciones , Receptor de Melanocortina Tipo 4/agonistas , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA