Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 54(8): 4800-4809, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32207931

RESUMEN

The environmental spread of antibiotics and antibiotic resistance genes (ARGs) from the land application of livestock wastes can be a potential public health threat. The objective of this study was to assess the effects of setback distance, which determines how close manure may be applied in relation to surface water, on the transport of antibiotics and ARGs in runoff and soil following land application of swine manure slurry. Rainfall simulation tests were conducted on field plots covered with wheat residues, each of which contained an upslope manure region where slurry was applied and an adjacent downslope setback region that did not receive slurry. Results show that all three antibiotics (chlortetracycline, lincomycin, and tiamulin) and seven out of the ten genes tested (erm(B), erm(C), intI1, tet(O), tet(Q), tet(X), and the 16S rRNA gene) decreased significantly in runoff with increased setback distance. Only blaTEM, chlortetracycline, and tiamulin decreased significantly in surface soil with increased setback distance, while the other analytes did not exhibit statistically significant trends. By using linear regression models with field data, we estimate that a setback distance between 34-67 m may allow manure-borne antibiotics and ARGs in runoff to reach background levels under the experimental conditions tested.


Asunto(s)
Estiércol , Suelo , Animales , Antibacterianos/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Genes Bacterianos/efectos de los fármacos , ARN Ribosómico 16S , Microbiología del Suelo , Porcinos
2.
J Hazard Mater ; 429: 128278, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35065306

RESUMEN

Land application of livestock manure introduces antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) into the soil environment. The objectives of this study were to examine the changes of resistome and mobilome in runoff and soil as a function of setback distance, i.e., the distance between manured soil and surface water, and to quantify the contributions of manure and background soil to the ARGs and MGEs in surface runoff. The resistome and mobilome in runoff and soil from a field-scale plot study were characterized using a high throughput quantitative polymerase chain reaction (HT-qPCR) array. It was estimated that a setback distance of ~40 m is required to reduce the total abundance of ARGs and MGEs in runoff from amended plots to that in control runoff. The resistome and mobilome of the soil in the setback region was not affected by manure-borne ARGs and MGEs. SourceTracker analyses revealed that background soil gradually became the predominant source of the ARGs and MGEs in runoff as setback distance increased. The results demonstrate how manure-borne ARGs and MGEs dissipated in agricultural runoff with increasing setback distance and had limited impacts on the resistome and mobilome of soil within the setback region.


Asunto(s)
Estiércol , Suelo , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Microbiología del Suelo
3.
Sci Total Environ ; 761: 143287, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33168251

RESUMEN

Manure storage facilities are critical control points to reduce antibiotic resistance genes (ARGs) in swine manure slurry before the slurry is land applied. However, little is known about how exogenous chemicals entering the manure storage facilities may affect the fate of ARGs. The objective of this study was to analyze the impact of six commonly used pit additives and four facility disinfectants on the concentration of ARGs in swine manure slurry. Bench scale reactors, each containing approximately 50 L of liquid swine manure, were dosed with additives or disinfectants and were sampled for 40 days. Seven antibiotic resistance genes along with the intI1 gene and the 16S rRNA gene were monitored. Out of the six additives tested, Sludge Away significantly reduced the time-averaged absolute abundance of erm(C), erm(F), tet(Q), and the 16S rRNA gene as compared to the no additive control. Out of the four disinfectants tested, Tek-Trol significantly reduced the time-averaged absolute abundance of erm(B), erm(C), erm(F), intI1, tet(Q), and tet(X) than did the no-disinfectant control. According to Spearman's rank correlation, three genes erm(F), tet(Q), and tet(X) showed a strong to perfectly positive correlation and the two genes erm(B) and tet(O) showed a moderate to strong correlation in both the additive and disinfectant tests. Overall, the disinfectants were more effective in controlling the absolute abundance of ARGs than were the pit additives.


Asunto(s)
Desinfectantes , Estiércol , Animales , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Genes Bacterianos , ARN Ribosómico 16S , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA