Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunol Cell Biol ; 101(1): 49-64, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36222375

RESUMEN

T-cell receptor+ CD4- CD8- double-negative (DN) T cells are a population of T cells present in low abundance in blood and lymphoid organs, but enriched in various organs including the kidney. Despite burgeoning interest in these cells, studies examining their abundance in the kidney have reported conflicting results. Here we developed a flow cytometry strategy to clearly segregate DN T cells from other immune cells in the mouse kidney and used it to characterize their phenotype and response in renal ischemia-reperfusion injury (IRI). These experiments revealed that in the healthy kidney, most DN T cells are located within the renal parenchyma and exhibit an effector memory phenotype. In response to IRI, the number of renal DN T cells is unaltered after 24 h, but significantly increased by 72 h. This increase is not related to alterations in proliferation or apoptosis. By contrast, adoptive transfer studies indicate that circulating DN T cells undergo preferential recruitment to the postischemic kidney. Furthermore, DN T cells show the capacity to upregulate CD8, both in vivo following adoptive transfer and in response to ex vivo activation. Together, these findings provide novel insights regarding the phenotype of DN T cells in the kidney, including their predominant extravascular location, and show that increases in their abundance in the kidney following IRI occur in part as a result of increased recruitment from the circulation. Furthermore, the observation that DN T cells can upregulate CD8 in vivo has important implications for detection and characterization of DN T cells in future studies.


Asunto(s)
Daño por Reperfusión , Linfocitos T , Ratones , Animales , Riñón , Receptores de Antígenos de Linfocitos T alfa-beta , Receptores de Antígenos de Linfocitos T
2.
J Immunol ; 205(6): 1593-1600, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32769122

RESUMEN

We previously reported sex differences in innate susceptibility to Staphylococcus aureus skin infection and that bone marrow neutrophils (BMN) from female mice have an enhanced ability to kill S. aureus ex vivo compared with those of male mice. However, the mechanism(s) driving this sex bias in neutrophil killing have not been reported. Given the role of opsonins such as complement, as well as their receptors, in S. aureus recognition and clearance, we investigated their contribution to the enhanced bactericidal capacity of female BMN. We found that levels of C3 in the serum and CR3 (CD11b/CD18) on the surface of BMN were higher in female compared with male mice. Consistent with increased CR3 expression following TNF-α priming, production of reactive oxygen species (ROS), an important bactericidal effector, was also increased in female versus male BMN in response to serum-opsonized S. aureus Furthermore, blocking CD11b reduced both ROS levels and S. aureus killing by murine BMN from both sexes. However, at the same concentration of CD11b blocking Ab, S. aureus killing by female BMN was greatly reduced compared with those from male mice, suggesting CR3-dependent differences in bacterial killing between sexes. Overall, this work highlights the contributions of CR3, C3, and ROS to innate sex bias in the neutrophil response to S. aureus Given that neutrophils are crucial for S. aureus clearance, understanding the mechanism(s) driving the innate sex bias in neutrophil bactericidal capacity could identify novel host factors important for host defense against S. aureus.


Asunto(s)
Antígeno de Macrófago-1/metabolismo , Neutrófilos/fisiología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/fisiología , Animales , Anticuerpos Bloqueadores/metabolismo , Antígeno CD11b/inmunología , Antígeno CD11b/metabolismo , Complemento C3/metabolismo , Citotoxicidad Inmunológica , Femenino , Interacciones Huésped-Patógeno , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Caracteres Sexuales , Factores Sexuales
3.
Prehosp Emerg Care ; 25(3): 325-332, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32347776

RESUMEN

INTRODUCTION: Endotracheal intubation may be required for the transport of critically ill neonates and children. Data suggest that first pass success (FPS) is associated with lower rates of complications. Thus, understanding factors associated with FPS can have important implications for clinical outcomes. We aimed to determine the impact of videolaryngoscopy (VL) on FPS by a pediatric critical care transport team (CCTT). Methods: We performed a retrospective cross-sectional study on pediatric patients (≤ 18 years of age) requiring endotracheal intubation by a tertiary care-based pediatric CCTT between 2011 and 2019. Patients were categorized as neonatal (≤ 28 days of age, either preterm or term) or pediatric (> 28 days of age). All intubation attempts using VL were performed with the C-MAC videolaryngoscope. Our primary outcome was rate of FPS. Descriptive statistics of patient, provider, and procedure characteristics were calculated. Multivariate regression was used to test the association between FPS and type of laryngoscope (video versus direct) adjusting for significant clinical predictors. Results: Over the study period, 135 patients were intubated by the CCTT. Sixty percent of these patients were neonates, and 40% were pediatric. The overall FPS rate was 61%, with lower rates in neonates (54%) and higher rates in pediatric patients (70%). Use of videolaryngoscopy increased over the study period. First pass success rate using the C-MAC videolaryngoscope was 72% compared to 42% for direct laryngoscopy across the whole study population. In adjusted analyses, FPS using VL was significantly higher in the pediatric patient population (aOR 12.42 [95%CI 3.33, 46.29]), but not in neonates (aOR 1.08 [0.44, 2.63]). Use of VL increased significantly over the study period. Conclusion: We found use of a C-MAC videolaryngoscope by a critical care transport team was associated with improved FPS during endotracheal intubation of pediatric patients but not neonates, after controlling for other patient and provider characteristics. In addition to the impact on FPS, use of VL may offer additional educational and quality benefits.


Asunto(s)
Servicios Médicos de Urgencia , Laringoscopios , Niño , Cuidados Críticos , Estudios Transversales , Humanos , Recién Nacido , Intubación Intratraqueal , Laringoscopía , Estudios Retrospectivos , Grabación en Video
4.
Infect Immun ; 88(8)2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32513856

RESUMEN

Staphylococcus aureus fatty acid kinase FakA is necessary for the incorporation of exogenous fatty acids into the lipid membrane. We previously demonstrated that the inactivation of fakA leads to decreased α-hemolysin (Hla) production but increased expression of the proteases SspAB and aureolysin in vitro, and that the ΔfakA mutant causes larger lesions than the wild type (WT) during murine skin infection. As expected, necrosis is Hla dependent in the presence or absence of FakA, as both hla and hla ΔfakA mutants are unable to cause necrosis of the skin. At day 4 postinfection, while the ΔfakA mutant maintains larger and more necrotic abscesses, bacterial numbers are similar to those of the WT, indicating the enhanced tissue damage of mice infected with the ΔfakA mutant is not due to an increase in bacterial burden. At this early stage of infection, skin infected with the ΔfakA mutant has decreased levels of proinflammatory cytokines, such as interleukin-17A (IL-17A) and IL-1α, compared to those of WT-infected skin. At a later stage of infection (day 7), abscess resolution and bacterial clearance are hindered in ΔfakA mutant-infected mice. The paradoxical findings of decreased Hla in vitro but increased necrosis in vivo led us to investigate the role of the proteases regulated by FakA. Utilizing Δaur and ΔsspAB mutants in both the WT and fakA mutant backgrounds, we found that the absence of these proteases in a fakA mutant reduced dermonecrosis to levels similar to those of the WT strain. These studies suggest that the overproduction of proteases is one factor contributing to the enhanced pathogenesis of the ΔfakA mutant during skin infection.


Asunto(s)
Proteínas Bacterianas/inmunología , Metaloendopeptidasas/inmunología , Fosfotransferasas (aceptor de Grupo Carboxilo)/inmunología , Serina Endopeptidasas/inmunología , Úlcera Cutánea/inmunología , Infecciones Cutáneas Estafilocócicas/inmunología , Staphylococcus aureus/patogenicidad , Animales , Carga Bacteriana , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/inmunología , Quimiocina CCL4/genética , Quimiocina CCL4/inmunología , Femenino , Regulación de la Expresión Génica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-1alfa/genética , Interleucina-1alfa/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/genética , Ratones , Fosfotransferasas (aceptor de Grupo Carboxilo)/deficiencia , Fosfotransferasas (aceptor de Grupo Carboxilo)/genética , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Transducción de Señal , Piel/inmunología , Piel/microbiología , Piel/patología , Úlcera Cutánea/genética , Úlcera Cutánea/microbiología , Úlcera Cutánea/patología , Infecciones Cutáneas Estafilocócicas/genética , Infecciones Cutáneas Estafilocócicas/microbiología , Infecciones Cutáneas Estafilocócicas/patología , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Factores de Virulencia/genética , Factores de Virulencia/inmunología
5.
J Immunol ; 200(2): 657-668, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29222165

RESUMEN

Numerous studies have reported sex bias in infectious diseases, with bias direction dependent on pathogen and site of infection. Staphylococcus aureus is the most common cause of skin and soft tissue infections (SSTIs), yet sex bias in susceptibility to S. aureus SSTI has not been described. A search of electronic health records revealed an odds ratio of 2.4 for S. aureus SSTI in males versus females. To investigate the physiological basis of this bias, we compared outcomes between male and female mice in a model of S. aureus dermonecrosis. Consistent with the epidemiological data, female mice were better protected against SSTI, with reduced dermonecrosis followed later by increased bacterial clearance. Protection in females was disrupted by ovariectomy and restored by short-term estrogen administration. Importantly, this sex bias was mediated by a sex-specific response to the S. aureus-secreted virulence factor α-hemolysin (Hla). Infection with wild-type S. aureus suppressed inflammatory cytokine production in the skin of female, but not male, mice when compared with infection with an isogenic hla deletion mutant. This differential response was conserved following injection with Hla alone, demonstrating a direct response to Hla independent of bacterial burden. Additionally, neutrophils, essential for clearing S. aureus, demonstrated sex-specific S. aureus bactericidal capacity ex vivo. This work suggests that sex-specific skin innate responsiveness to Hla and neutrophil bactericidal capacity play important roles in limiting S. aureus SSTI in females. Understanding the molecular mechanisms controlling this sex bias may reveal novel targets to promote host innate defense against S. aureus skin infection.


Asunto(s)
Toxinas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Resistencia a la Enfermedad , Estrógenos/metabolismo , Femenino , Expresión Génica , Inmunidad Innata , Inflamasomas/metabolismo , Mediadores de Inflamación , Masculino , Ratones , Viabilidad Microbiana/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/microbiología , Factores Sexuales , Infecciones Cutáneas Estafilocócicas/genética , Infecciones Cutáneas Estafilocócicas/inmunología , Infecciones Cutáneas Estafilocócicas/metabolismo , Virulencia , Factores de Virulencia
6.
Proc Natl Acad Sci U S A ; 114(10): E1968-E1976, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223486

RESUMEN

Pulmonary exposure to multiwalled carbon nanotubes (MWCNTs) causes indirect systemic inflammation through unknown pathways. MWCNTs translocate only minimally from the lungs into the systemic circulation, suggesting that extrapulmonary toxicity may be caused indirectly by lung-derived factors entering the circulation. To assess a role for MWCNT-induced circulating factors in driving neuroinflammatory outcomes, mice were acutely exposed to MWCNTs (10 or 40 µg/mouse) via oropharyngeal aspiration. At 4 h after MWCNT exposure, broad disruption of the blood-brain barrier (BBB) was observed across the capillary bed with the small molecule fluorescein, concomitant with reactive astrocytosis. However, pronounced BBB permeation was noted, with frank albumin leakage around larger vessels (>10 µm), overlain by a dose-dependent astroglial scar-like formation and recruitment of phagocytic microglia. As affirmed by elevated inflammatory marker transcription, MWCNT-induced BBB disruption and neuroinflammation were abrogated by pretreatment with the rho kinase inhibitor fasudil. Serum from MWCNT-exposed mice induced expression of adhesion molecules in primary murine cerebrovascular endothelial cells and, in a wound-healing in vitro assay, impaired cell motility and cytokinesis. Serum thrombospondin-1 level was significantly increased after MWCNT exposure, and mice lacking the endogenous receptor CD36 were protected from the neuroinflammatory and BBB permeability effects of MWCNTs. In conclusion, acute pulmonary exposure to MWCNTs causes neuroinflammatory responses that are dependent on the disruption of BBB integrity.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Barrera Hematoencefálica/efectos de los fármacos , Portadores de Fármacos/efectos adversos , Encefalitis/prevención & control , Nanotubos de Carbono/efectos adversos , Inhibidores de Proteínas Quinasas/farmacología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Administración por Inhalación , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Antígenos CD36/deficiencia , Antígenos CD36/genética , Movimiento Celular/efectos de los fármacos , Encefalitis/inducido químicamente , Encefalitis/genética , Encefalitis/patología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Fluoresceína/farmacocinética , Colorantes Fluorescentes/farmacocinética , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Ratones , Trombospondina 1/genética , Trombospondina 1/metabolismo , Quinasas Asociadas a rho/genética
7.
J Nat Prod ; 82(3): 550-558, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30730742

RESUMEN

Current treatment options for bacterial infections are dependent on antibiotics that inhibit microbial growth and viability. These approaches result in the evolution of drug-resistant strains of bacteria. An anti-infective strategy that is less likely to lead to the development of resistance is the disruption of quorum sensing mechanisms, which are involved in promoting virulence. The goal of this study was to identify fungal metabolites effective as quorum sensing inhibitors. Three new prenylated diresorcinols (1-3), along with two known compounds, (4 R) -regiolone and decarboxycitrinone, were isolated from a freshwater fungus (Helotiales sp.) from North Carolina. Their structures were assigned on the basis of HRESIMS and NMR experiments. The structure of compound 1 was confirmed via X-ray diffraction analysis, and its absolute configuration was established by TDDFT-ECD and optical rotation calculations. Compounds 1-3 suppressed quorum sensing in a clinical isolate of methicillin-resistant Staphylococcus aureus (MRSA), with IC50 values ranging from 0.3 to 12.5 µM. These compounds represent potential leads in the development of antivirulence therapeutics.


Asunto(s)
Bacterias/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Resorcinoles/farmacología , Hongos/efectos de los fármacos , Prenilación , Resorcinoles/química
8.
J Immunol ; 196(1): 328-35, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608923

RESUMEN

Hyperlipidemia has been extensively studied in the context of atherosclerosis, whereas the potential health consequences of the opposite extreme, hypolipidemia, remain largely uninvestigated. Circulating lipoproteins are essential carriers of insoluble lipid molecules and are increasingly recognized as innate immune effectors. Importantly, severe hypolipidemia, which may occur with trauma or critical illness, is clinically associated with bacterial pneumonia. To test the hypothesis that circulating lipoproteins are essential for optimal host innate defense in the lung, we used lipoprotein-deficient mice and a mouse model of Staphylococcus aureus pneumonia in which invasive infection requires virulence factor expression controlled by the accessory gene regulator (agr) operon. Activation of agr and subsequent virulence factor expression is inhibited by apolipoprotein B, the structural protein of low-density lipoprotein, which binds and sequesters the secreted agr-signaling peptide (AIP). In this article, we report that lipoprotein deficiency impairs early pulmonary innate defense against S. aureus quorum-sensing-dependent pathogenesis. Specifically, apolipoprotein B levels in the lung early postinfection are significantly reduced with lipoprotein deficiency, coinciding with impaired host control of S. aureus agr-signaling and increased agr-dependent morbidity (weight loss) and inflammation. Given that lipoproteins also inhibit LTA- and LPS-mediated inflammation, these results suggest that hypolipidemia may broadly impact posttrauma pneumonia susceptibility to both Gram-positive and -negative pathogens. Together with previous reports demonstrating that hyperlipidemia also impairs lung innate defense, these results suggest that maintenance of normal serum lipoprotein levels is necessary for optimal host innate defense in the lung.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hipolipoproteinemias/inmunología , Lipoproteínas LDL/sangre , Neumonía Estafilocócica/inmunología , Percepción de Quorum/inmunología , Staphylococcus aureus/inmunología , Transactivadores/metabolismo , Animales , Apolipoproteínas B/inmunología , Proteínas Bacterianas/genética , Línea Celular , Modelos Animales de Enfermedad , Humanos , Hipolipoproteinemias/genética , Inmunidad Innata/inmunología , Lipoproteínas LDL/inmunología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/genética , Transactivadores/genética
9.
FASEB J ; 30(5): 1880-91, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26864854

RESUMEN

Air pollution is implicated in neurodegenerative disease risk and progression and in microglial activation, but the mechanisms are unknown. In this study, microglia remained activated 24 h after ozone (O3) exposure in rats, suggesting a persistent signal from lung to brain. Ex vivo analysis of serum from O3-treated rats revealed an augmented microglial proinflammatory response and ß-amyloid 42 (Aß42) neurotoxicity independent of traditional circulating cytokines, where macrophage-1 antigen-mediated microglia proinflammatory priming. Aged mice exhibited reduced pulmonary immune profiles and the most pronounced neuroinflammation and microglial activation in response to mixed vehicle emissions. Consistent with this premise, cluster of differentiation 36 (CD36)(-/-) mice exhibited impaired pulmonary immune responses concurrent with augmented neuroinflammation and microglial activation in response to O3 Further, aging glia were more sensitive to the proinflammatory effects of O3 serum. Together, these findings outline the lung-brain axis, where air pollutant exposures result in circulating, cytokine-independent signals present in serum that elevate the brain proinflammatory milieu, which is linked to the pulmonary response and is further augmented with age.-Mumaw, C. L., Levesque, S., McGraw, C., Robertson, S., Lucas, S., Stafflinger, J. E., Campen, M. J., Hall, P., Norenberg, J. P., Anderson, T., Lund, A. K., McDonald, J. D., Ottens, A. K., Block, M. L. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors.


Asunto(s)
Contaminación del Aire/efectos adversos , Encéfalo/efectos de los fármacos , Enfermedades Pulmonares/inducido químicamente , Pulmón/efectos de los fármacos , Microglía/efectos de los fármacos , Ozono/toxicidad , Animales , Anticuerpos , Encéfalo/metabolismo , Línea Celular , Inflamación/inducido químicamente , Inflamación/metabolismo , Pulmón/metabolismo , Enfermedades Pulmonares/metabolismo , Antígeno de Macrófago-1/inmunología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas
10.
J Immunol ; 195(5): 2294-302, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26223653

RESUMEN

Staphylococcus aureus is the primary cause of skin and skin structure infections (SSSIs) in the United States. α-Hemolysin (Hla), a pore-forming toxin secreted by S. aureus and a major contributor to tissue necrosis, prompts recruitment of neutrophils critical for host defense against S. aureus infections. However, the failure to clear apoptotic neutrophils can result in damage to host tissues, suggesting that mechanisms of neutrophil clearance are essential to limiting Hla-mediated dermonecrosis. We hypothesized that CD36, a scavenger receptor which facilitates recognition of apoptosing cells, would play a significant role in regulating Hla-mediated inflammation and tissue injury during S. aureus SSSI. In this study, we show that CD36 on macrophages negatively regulates dermonecrosis caused by Hla-producing S. aureus. This regulation is independent of bacterial burden, as CD36 also limits dermonecrosis caused by intoxication with sterile bacterial supernatant or purified Hla. Dermonecrotic lesions of supernatant intoxicated CD36(-/-) mice are significantly larger, with increased neutrophil accumulation and IL-1ß expression, compared with CD36(+/+) (wild-type) mice. Neutrophil depletion of CD36(-/-) mice prevents this phenotype, demonstrating the contribution of neutrophils to tissue injury in this model. Furthermore, administration of CD36(+/+) but not CD36(-/-) macrophages near the site of intoxication reduces dermonecrosis, IL-1ß production and neutrophil accumulation to levels seen in wild-type mice. This therapeutic effect is reversed by inhibiting actin polymerization in the CD36(+/+) macrophages, supporting a mechanism of action whereby CD36-dependent macrophage phagocytosis of apoptotic neutrophils regulates Hla-mediated dermonecrosis. Taken together, these data demonstrate that CD36 is essential for controlling the host innate response to S. aureus skin infection.


Asunto(s)
Toxinas Bacterianas/inmunología , Antígenos CD36/inmunología , Proteínas Hemolisinas/inmunología , Inmunidad Innata/inmunología , Enfermedades Cutáneas Bacterianas/inmunología , Infecciones Estafilocócicas/inmunología , Animales , Apoptosis/inmunología , Western Blotting , Antígenos CD36/genética , Antígenos CD36/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Neutrófilos/metabolismo , Fagocitosis/inmunología , Receptores Depuradores/genética , Receptores Depuradores/inmunología , Receptores Depuradores/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Enfermedades Cutáneas Bacterianas/genética , Enfermedades Cutáneas Bacterianas/microbiología , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Staphylococcus aureus/fisiología
11.
PLoS Pathog ; 10(6): e1004174, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24945495

RESUMEN

Bacterial signaling systems are prime drug targets for combating the global health threat of antibiotic resistant bacterial infections including those caused by Staphylococcus aureus. S. aureus is the primary cause of acute bacterial skin and soft tissue infections (SSTIs) and the quorum sensing operon agr is causally associated with these. Whether efficacious chemical inhibitors of agr signaling can be developed that promote host defense against SSTIs while sparing the normal microbiota of the skin is unknown. In a high throughput screen, we identified a small molecule inhibitor (SMI), savirin (S. aureus virulence inhibitor) that disrupted agr-mediated quorum sensing in this pathogen but not in the important skin commensal Staphylococcus epidermidis. Mechanistic studies employing electrophoretic mobility shift assays and a novel AgrA activation reporter strain revealed the transcriptional regulator AgrA as the target of inhibition within the pathogen, preventing virulence gene upregulation. Consistent with its minimal impact on exponential phase growth, including skin microbiota members, savirin did not provoke stress responses or membrane dysfunction induced by conventional antibiotics as determined by transcriptional profiling and membrane potential and integrity studies. Importantly, savirin was efficacious in two murine skin infection models, abating tissue injury and selectively promoting clearance of agr+ but not Δagr bacteria when administered at the time of infection or delayed until maximal abscess development. The mechanism of enhanced host defense involved in part enhanced intracellular killing of agr+ but not Δagr in macrophages and by low pH. Notably, resistance or tolerance to savirin inhibition of agr was not observed after multiple passages either in vivo or in vitro where under the same conditions resistance to growth inhibition was induced after passage with conventional antibiotics. Therefore, chemical inhibitors can selectively target AgrA in S. aureus to promote host defense while sparing agr signaling in S. epidermidis and limiting resistance development.


Asunto(s)
Antibacterianos/uso terapéutico , Proteínas Bacterianas/antagonistas & inhibidores , Inmunidad Innata/efectos de los fármacos , Quinazolinonas/uso terapéutico , Percepción de Quorum/efectos de los fármacos , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Transactivadores/antagonistas & inhibidores , Triazoles/uso terapéutico , Animales , Antibacterianos/efectos adversos , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular Transformada , Descubrimiento de Drogas , Genes Reporteros/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones Pelados , Ratones Noqueados , Conformación Molecular , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida/efectos adversos , Mutación , Fagocitosis/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Quinazolinonas/efectos adversos , Quinazolinonas/química , Quinazolinonas/farmacología , Piel/efectos de los fármacos , Piel/microbiología , Infecciones Cutáneas Estafilocócicas/inmunología , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/inmunología , Staphylococcus aureus/fisiología , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/crecimiento & desarrollo , Staphylococcus epidermidis/inmunología , Staphylococcus epidermidis/fisiología , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo , Triazoles/efectos adversos , Triazoles/química , Triazoles/farmacología
12.
Appl Environ Microbiol ; 82(23): 6859-6869, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27637878

RESUMEN

A major shortcoming to plasmid-based genetic tools is the necessity of using antibiotics to ensure plasmid maintenance. While selectable markers are very powerful, their use is not always practical, such as during in vivo models of bacterial infection. During previous studies, it was noted that the uncharacterized LAC-p01 plasmid in Staphylococcus aureus USA300 isolates was stable in the absence of a known selection and therefore could serve as a platform for new genetic tools for Staphylococcus species. LAC-p01 was genetically manipulated into an Escherichia coli-S. aureus shuttle vector that remained stable for at least 100 generations without antibiotic selection. The double- and single-stranded (dso and sso) origins were identified and found to be essential for plasmid replication and maintenance, respectively. In contrast, deletion analyses revealed that none of the four LAC-p01 predicted open reading frames were necessary for stability. Subsequent to this, the shuttle vector was used as a platform to generate two plasmids. The first plasmid, pKK22, contains all genes native to the plasmid for use in S. aureus USA300 strains, while the second, pKK30, lacks the four predicted open reading frames for use in non-USA300 isolates. pKK30 was also determined to be stable in Staphylococcus epidermidis Moreover, pKK22 was maintained for 7 days postinoculation during a murine model of S. aureus systemic infection and successfully complemented an hla mutant in a dermonecrosis model. These plasmids that eliminate the need for antibiotics during both in vitro and in vivo experiments are powerful new tools for studies of StaphylococcusIMPORTANCE Plasmid stability has been problematic in bacterial studies, and historically antibiotics have been used to ensure plasmid maintenance. This has been a major limitation during in vivo studies, where providing antibiotics for plasmid maintenance is difficult and has confounding effects. Here, we have utilized the naturally occurring plasmid LAC-p01 from an S. aureus USA300 strain to construct stable plasmids that obviate antibiotic usage. These newly modified plasmids retain stability over a multitude of generations in vitro and in vivo without antibiotic selection. With these plasmids, studies requiring genetic complementation, protein expression, or genetic reporter systems would not only overcome the burden of antibiotic usage but also eliminate the side effects of these antibiotics. Thus, our plasmids can be used as a powerful genetic tool for studies of Staphylococcus species.

13.
Antimicrob Agents Chemother ; 59(4): 2223-35, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25645827

RESUMEN

Antibiotic-resistant pathogens are a global health threat. Small molecules that inhibit bacterial virulence have been suggested as alternatives or adjuncts to conventional antibiotics, as they may limit pathogenesis and increase bacterial susceptibility to host killing. Staphylococcus aureus is a major cause of invasive skin and soft tissue infections (SSTIs) in both the hospital and community settings, and it is also becoming increasingly antibiotic resistant. Quorum sensing (QS) mediated by the accessory gene regulator (agr) controls virulence factor production essential for causing SSTIs. We recently identified ω-hydroxyemodin (OHM), a polyhydroxyanthraquinone isolated from solid-phase cultures of Penicillium restrictum, as a suppressor of QS and a compound sought for the further characterization of the mechanism of action. At concentrations that are nontoxic to eukaryotic cells and subinhibitory to bacterial growth, OHM prevented agr signaling by all four S. aureus agr alleles. OHM inhibited QS by direct binding to AgrA, the response regulator encoded by the agr operon, preventing the interaction of AgrA with the agr P2 promoter. Importantly, OHM was efficacious in a mouse model of S. aureus SSTI. Decreased dermonecrosis with OHM treatment was associated with enhanced bacterial clearance and reductions in inflammatory cytokine transcription and expression at the site of infection. Furthermore, OHM treatment enhanced the immune cell killing of S. aureus in vitro in an agr-dependent manner. These data suggest that bacterial disarmament through the suppression of S. aureus QS may bolster the host innate immune response and limit inflammation.


Asunto(s)
Antibacterianos/farmacología , Emodina/análogos & derivados , Inflamación/prevención & control , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Animales , Proteínas Bacterianas/genética , Citocinas/biosíntesis , Emodina/farmacología , Humanos , Técnicas In Vitro , Inflamación/etiología , Inflamación/patología , Leucocitos/microbiología , Ratones , Modelos Moleculares , Conejos , Infecciones Estafilocócicas/patología , Transactivadores/genética , Factores de Virulencia/metabolismo
14.
PLoS Pathog ; 9(2): e1003166, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23459693

RESUMEN

Staphylococcus aureus contains an autoinducing quorum-sensing system encoded within the agr operon that coordinates expression of virulence genes required for invasive infection. Allelic variation within agr has generated four agr specific groups, agr I-IV, each of which secretes a distinct autoinducing peptide pheromone (AIP1-4) that drives agr signaling. Because agr signaling mediates a phenotypic change in this pathogen from an adherent colonizing phenotype to one associated with considerable tissue injury and invasiveness, we postulated that a significant contribution to host defense against tissue damaging and invasive infections could be provided by innate immune mechanisms that antagonize agr signaling. We determined whether two host defense factors that inhibit AIP1-induced agrI signaling, Nox2 and apolipoprotein B (apoB), also contribute to innate control of AIP3-induced agrIII signaling. We hypothesized that apoB and Nox2 would function differently against AIP3, which differs from AIP1 in amino acid sequence and length. Here we show that unlike AIP1, AIP3 is resistant to direct oxidant inactivation by Nox2 characteristic ROS. Rather, the contribution of Nox2 to defense against agrIII signaling is through oxidation of LDL. ApoB in the context of oxLDL, and not LDL, provides optimal host defense against S. aureus agrIII infection by binding the secreted signaling peptide, AIP3, and preventing expression of the agr-driven virulence factors which mediate invasive infection. ApoB within the context of oxLDL also binds AIP 1-4 and oxLDL antagonizes agr signaling by all four agr alleles. Our results suggest that Nox2-mediated oxidation of LDL facilitates a conformational change in apoB to one sufficient for binding and sequestration of all four AIPs, demonstrating the interdependence of apoB and Nox2 in host defense against agr signaling. These data reveal a novel role for oxLDL in host defense against S. aureus quorum-sensing signaling.


Asunto(s)
Apolipoproteínas B/metabolismo , Proteínas Bacterianas/metabolismo , Glicoproteínas de Membrana/fisiología , NADPH Oxidasas/fisiología , Percepción de Quorum/fisiología , Receptores de LDL/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , Transactivadores/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Femenino , Regulación Bacteriana de la Expresión Génica , Inmunidad Innata , Inmunoensayo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasa 2 , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/patología , Resonancia por Plasmón de Superficie
15.
Plant Physiol ; 165(4): 1591-1603, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24948837

RESUMEN

Multiple factors, including the MADS-domain proteins AGAMOUS-LIKE15 (AGL15) and AGL18, contribute to the regulation of the transition from vegetative to reproductive growth. AGL15 and AGL18 were previously shown to act redundantly as floral repressors and upstream of FLOWERING LOCUS T (FT) in Arabidopsis (Arabidopsis thaliana). A series of genetic and molecular experiments, primarily focused on AGL15, was performed to more clearly define their role. agl15 agl18 mutations fail to suppress ft mutations but show additive interactions with short vegetative phase (svp) mutations in ft and suppressor of constans1 (soc1) backgrounds. Chromatin immunoprecipitation analyses with AGL15-specific antibodies indicate that AGL15 binds directly to the FT locus at sites that partially overlap those bound by SVP and FLOWERING LOCUS C. In addition, expression of AGL15 in the phloem effectively restores wild-type flowering times in agl15 agl18 mutants. When agl15 agl18 mutations are combined with agl24 svp mutations, the plants show upward curling of rosette and cauline leaves, in addition to early flowering. The change in leaf morphology is associated with elevated levels of FT and ectopic expression of SEPALLATA3 (SEP3), leading to ectopic expression of floral genes. Leaf curling is suppressed by sep3 and ft mutations and enhanced by soc1 mutations. Thus, AGL15 and AGL18, along with SVP and AGL24, are necessary to block initiation of floral programs in vegetative organs.

16.
Infect Immun ; 82(5): 1813-22, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24549328

RESUMEN

During a screen of the Nebraska Transposon Mutant Library, we identified 71 mutations in the Staphylococcus aureus genome that altered hemolysis on blood agar medium. Although many of these mutations disrupted genes known to affect the production of alpha-hemolysin, two of them were associated with an apparent operon, designated vfrAB, that had not been characterized previously. Interestingly, a ΔvfrB mutant exhibited only minor effects on the transcription of the hla gene, encoding alpha-hemolysin, when grown in broth, as well as on RNAIII, a posttranscriptional regulatory RNA important for alpha-hemolysin translation, suggesting that VfrB may function at the posttranscriptional level. Indeed, a ΔvfrB mutant had increased aur and sspAB protease expression under these conditions. However, disruption of the known secreted proteases in the ΔvfrB mutant did not restore hemolytic activity in the ΔvfrB mutant on blood agar. Further analysis revealed that, in contrast to the minor effects of VfrB on hla transcription when strains were cultured in liquid media, the level of hla transcription was decreased 50-fold in the absence of VfrB on solid media. These results demonstrate that while VfrB represses protease expression when strains are grown in broth, hla regulation is highly responsive to factors associated with growth on solid media. Intriguingly, the ΔvfrB mutant displayed increased pathogenesis in a model of S. aureus dermonecrosis, further highlighting the complexity of VfrB-dependent virulence regulation. The results of this study describe a phenotype associated with a class of highly conserved yet uncharacterized proteins found in Gram-positive bacteria, and they shed new light on the regulation of virulence factors necessary for S. aureus pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Staphylococcus aureus/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Femenino , Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano , Ratones , Mutación , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/genética , Virulencia , Factores de Virulencia/genética
17.
Antimicrob Agents Chemother ; 58(1): 102-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24145519

RESUMEN

Vancomycin (VAN) is often used to treat methicillin-resistant Staphylococcus aureus (MRSA) bacteremia despite a high incidence of microbiological failure. Recent in vitro analyses of ß-lactams in combination with VAN demonstrated synergistic activity against MRSA. The goal of this study was to examine the impact of combination therapy with VAN and a ß-lactam (Combo) on the microbiological eradication of MRSA bacteremia compared to VAN alone. This was a retrospective cohort study of patients with MRSA bacteremia who received Combo therapy or VAN alone. Microbiological eradication of MRSA, defined as a negative blood culture obtained after initiation of therapy, was used to evaluate the efficacy of each regimen. A total of 80 patients were included: 50 patients in the Combo group and 30 patients in the VAN-alone group. Microbiological eradication was achieved in 48 patients (96%) in the Combo group compared to 24 patients (80%) in the VAN-alone group (P = 0.021). In a multivariable model, the Combo treatment had a higher likelihood of achieving microbiological eradication (adjusted odds ratio, 11.24; 95% confidence interval, 1.7 to 144.3; P = 0.01). In patients with infective endocarditis (n = 22), 11/11 (100%) who received Combo therapy achieved microbiological eradication compared to 9/11 (81.8%) treated with VAN alone, but the difference was not statistically significant (P = 0.20). Patients with MRSA bacteremia who received Combo therapy were more likely to experience microbiological eradication of MRSA than patients who received VAN alone.


Asunto(s)
Antibacterianos/administración & dosificación , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Vancomicina/uso terapéutico , beta-Lactamas/uso terapéutico , Adulto , Anciano , Femenino , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento , Vancomicina/administración & dosificación , beta-Lactamas/administración & dosificación
18.
Microbiologyopen ; 13(3): e23, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867416

RESUMEN

The G protein-coupled estrogen receptor, also known as GPER1 or originally GPR30, is found in various tissues, indicating its diverse functions. It is typically present in immune cells, suggesting its role in regulating immune responses to infectious diseases. Our previous studies have shown that G-1, a selective GPER agonist, can limit the pathogenesis mediated by Staphylococcus aureus alpha-hemolysin (Hla). It aids in clearing bacteria in a mouse skin infection model and restricts the surface display of the Hla receptor, ADAM10 (a disintegrin and metalloprotease 10) in HaCaT keratinocytes. In this report, we delve into the modulation of GPER in human immune cells in relation to the NLRP3 inflammasome. We used macrophage-like differentiated THP-1 cells for our study. We found that treating these cells with G-1 reduces ATP release, decreases the activity of the caspase-1 enzyme, and lessens cell death following Hla intoxication. This is likely due to the reduced levels of ADAM10 and NLRP3 proteins, as well as the decreased display of the ADAM10 receptor in the G-1-treated THP-1 cells. Our studies, along with our previous work, suggest the potential therapeutic use of G-1 in reducing Hla susceptibility in humans. This highlights the importance of GPER in immune regulation and its potential as a therapeutic target.


Asunto(s)
Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide , Toxinas Bacterianas , Proteínas Hemolisinas , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Receptores de Estrógenos , Receptores Acoplados a Proteínas G , Staphylococcus aureus , Proteína ADAM10/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Humanos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Hemolisinas/metabolismo , Inflamasomas/metabolismo , Toxinas Bacterianas/metabolismo , Células THP-1 , Receptores de Estrógenos/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Staphylococcus aureus/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/agonistas , Caspasa 1/metabolismo , Adenosina Trifosfato/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/microbiología , Dipéptidos , Ácidos Hidroxámicos
19.
Sensors (Basel) ; 13(4): 5130-66, 2013 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-23598501

RESUMEN

Invasive infection by the Gram-positive pathogen Staphylococcus aureus is controlled by a four gene operon, agr that encodes a quorum sensing system for the regulation of virulence. While agr has been well studied in S. aureus, the contribution of agr homologues and analogues in other Gram-positive pathogens is just beginning to be understood. Intriguingly, other significant human pathogens, including Clostridium perfringens, Listeria monocytogenes, and Enterococcus faecalis contain agr or analogues linked to virulence. Moreover, other significant human Gram-positive pathogens use peptide based quorum sensing systems to establish or maintain infection. The potential for commonality in aspects of these signaling systems across different species raises the prospect of identifying therapeutics that could target multiple pathogens. Here, we review the status of research into these agr homologues, analogues, and other peptide based quorum sensing systems in Gram-positive pathogens as well as the potential for identifying common pathways and signaling mechanisms for therapeutic discovery.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/metabolismo , Bacterias Grampositivas/efectos de los fármacos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Percepción de Quorum , Secuencia de Aminoácidos , Bacterias Grampositivas/patogenicidad , Humanos , Datos de Secuencia Molecular , Péptidos/química
20.
Sci Rep ; 12(1): 1251, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075262

RESUMEN

Staphylococcus aureus is an opportunistic, pathogenic bacteria that causes significant morbidity and mortality. As antibiotic resistance by S. aureus continues to be a serious concern, developing novel drug therapies to combat these infections is vital. Quorum sensing inhibitors (QSI) dampen S. aureus virulence and facilitate clearance by the host immune system by blocking quorum sensing signaling that promotes upregulation of virulence genes controlled by the accessory gene regulator (agr) operon. While QSIs have shown therapeutic promise in mouse models of S. aureus skin infection, their further development has been hampered by the suggestion that agr inhibition promotes biofilm formation. In these studies, we investigated the relationship between agr function and biofilm growth across various S. aureus strains and experimental conditions, including in a mouse model of implant-associated infection. We found that agr deletion was associated with the presence of increased biofilm only under narrow in vitro conditions and, crucially, was not associated with enhanced biofilm development or enhanced morbidity in vivo.


Asunto(s)
Proteínas Bacterianas/fisiología , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus/fisiología , Transactivadores/fisiología , Animales , Técnicas de Cultivo , Femenino , Ratones Endogámicos BALB C , Percepción de Quorum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA