RESUMEN
Activation of innate immunity and deposition of blood-derived fibrin in the central nervous system (CNS) occur in autoimmune and neurodegenerative diseases, including multiple sclerosis (MS) and Alzheimer's disease (AD). However, the mechanisms that link disruption of the blood-brain barrier (BBB) to neurodegeneration are poorly understood, and exploration of fibrin as a therapeutic target has been limited by its beneficial clotting functions. Here we report the generation of monoclonal antibody 5B8, targeted against the cryptic fibrin epitope γ377-395, to selectively inhibit fibrin-induced inflammation and oxidative stress without interfering with clotting. 5B8 suppressed fibrin-induced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and the expression of proinflammatory genes. In animal models of MS and AD, 5B8 entered the CNS and bound to parenchymal fibrin, and its therapeutic administration reduced the activation of innate immunity and neurodegeneration. Thus, fibrin-targeting immunotherapy inhibited autoimmunity- and amyloid-driven neurotoxicity and might have clinical benefit without globally suppressing innate immunity or interfering with coagulation in diverse neurological diseases.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Fibrinógeno/antagonistas & inhibidores , Enfermedades Neurodegenerativas/inmunología , Animales , Epítopos , Humanos , Inflamación/inmunología , Ratones , RatasRESUMEN
Modulation of protein-protein interactions (PPIs) by small molecules has emerged as a valuable approach in drug discovery. Compared to direct inhibition, PPI stabilization is vastly underexplored but has strong advantages, including the ability to gain selectivity by targeting an interface formed only upon association of proteins. Here, we present the application of a site-directed screening technique based on disulfide trapping (tethering) to select for fragments that enhance the affinity between protein partners. We target the phosphorylation-dependent interaction between the hub protein 14-3-3σ and a peptide derived from Estrogen Receptor α (ERα), an important breast cancer target that is negatively regulated by 14-3-3σ. We identify orthosteric stabilizers that increase 14-3-3/ERα affinity up to 40-fold and propose the mechanism of stabilization based on X-ray crystal structures. These fragments already display partial selectivity toward ERα-like motifs over other representative 14-3-3 clients. This first of its kind study illustrates the potential of the tethering approach to overcome the hurdles in systematic PPI stabilizer discovery.
Asunto(s)
Proteínas 14-3-3/química , Neoplasias de la Mama/química , Descubrimiento de Drogas , Receptor alfa de Estrógeno/química , Proteínas 14-3-3/metabolismo , Neoplasias de la Mama/metabolismo , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Modelos Moleculares , Fosforilación , Unión Proteica/efectos de los fármacos , Conformación Proteica , Estabilidad Proteica/efectos de los fármacosRESUMEN
H3K27 (histone H3 Lys27) methylation is an important epigenetic modification that regulates gene transcription. In humans, EZH (enhancer of zeste homologue) 1 and EZH2 are the only enzymes capable of catalysing methylation of H3K27. There is great interest in understanding structure-function relationships for EZH2, as genetic alterations in this enzyme are thought to play a causal role in a number of human cancers. EZH2 is challenging to study because it is only active in the context of the multi-subunit PRC2 (polycomb repressive complex 2). vSET is a viral lysine methyltransferase that represents the smallest protein unit capable of catalysing H3K27 methylation. The crystal structure of this minimal catalytic protein has been solved and researchers have suggested that vSET might prove useful as an EZH2 surrogate for the development of active site-directed inhibitors. To test this proposition, we conducted comparative enzymatic analysis of human EZH2 and vSET and report that, although both enzymes share similar preferences for methylation of H3K27, they diverge in terms of their permissiveness for catalysing methylation of alternative histone lysine sites, their relative preferences for utilization of multimeric macromolecular substrates, their active site primary sequences and, most importantly, their sensitivity to inhibition by drug-like small molecules. The cumulative data led us to suggest that EZH2 and vSET have very distinct active site structures, despite the commonality of the reaction catalysed by the two enzymes. Hence, the EZH2 and vSET pair of enzymes represent an example of convergent evolution in which distinct structural solutions have developed to solve a common catalytic need.
Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Humanos , Metilación , Metiltransferasas/química , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Complejo Represivo Polycomb 2/química , Conformación Proteica , Homología de Secuencia de AminoácidoRESUMEN
In the past decade, macrocyclic peptides gained increasing interest as a new therapeutic modality to tackle intracellular and extracellular therapeutic targets that had been previously classified as "undruggable". Several technological advances have made discovering macrocyclic peptides against these targets possible: 1) the inclusion of noncanonical amino acids (NCAAs) into mRNA display, 2) increased availability of next generation sequencing (NGS), and 3) improvements in rapid peptide synthesis platforms. This type of directed-evolution based screening can produce large numbers of potential hit sequences given that DNA sequencing is the functional output of this platform. The current standard for selecting hit peptides from these selections for downstream follow-up relies on the frequency counting and sorting of unique peptide sequences which can result in the generation of false negatives due to technical reasons including low translation efficiency or other experimental factors. To overcome our inability to detect weakly enriched peptide sequences among our large data sets, we wanted to develop a clustering method that would enable the identification of peptide families. Unfortunately, utilizing traditional clustering algorithms, such as ClustalW, is not possible for this technology due to the incorporation of NCAAs in these libraries. Therefore, we developed a new atomistic clustering method with a Pairwise Aligned Peptide (PAP) chemical similarity metric to perform sequence alignments and identify macrocyclic peptide families. With this method, low enriched peptides, including isolated sequences (singletons), can now be clustered into families providing a comprehensive analysis of NGS data resulting from macrocycle discovery selections. Additionally, upon identification of a hit peptide with the desired activity, this clustering algorithm can be used to identify derivatives from the initial data set for structure-activity relationship (SAR) analysis without requiring additional selection experiments.
Asunto(s)
Aminoácidos , Quimioinformática , Humanos , Aminoácidos/genética , Péptidos/química , Análisis por Conglomerados , Biología Computacional , Biblioteca de PéptidosRESUMEN
The use of preprints, research manuscripts shared publicly before completing the traditional peer-review process, is becoming a more common practice among life science researchers. Early-career researchers (ECRs) benefit from posting preprints as they are shareable, citable, and prove productivity. However, preprinting a manuscript involves a discussion among all co-authors, and ECRs are often not the decision-makers. Therefore, ECRs may find themselves in situations where they are interested in depositing a preprint but are unsure how to approach their co-authors or advisor about preprinting. Leveraging our own experiences as ECRs, and feedback from the research community, we have constructed a guide for ECRs who are considering preprinting to enable them to take ownership over the process and to raise awareness about preprinting options. We hope that this guide helps ECRs to initiate conversations about preprinting with co-authors and encourage them to preprint their future research.
Asunto(s)
Investigadores , HumanosRESUMEN
The development of large, natural-product-like, combinatorial macrocyclic peptide libraries is essential in the quest to develop therapeutics for "undruggable" cellular targets. Herein we report the ribosomal synthesis of macrocyclic peptides containing one or more ß2-homo-amino acids (ß2haa) to enable their incorporation into mRNA display-based selection libraries. We confirmed the compatibility of 14 ß2-homo-amino acids, (S)- and (R)-stereochemistry, for single incorporation into a macrocyclic peptide with low to high translation efficiency. Interestingly, N-methylation of the backbone amide of ß2haa prevented the incorporation of this amino acid subclass by the ribosome. Additionally, we designed and incorporated several α,ß-disubstituted ß2,3-homo-amino acids (ß2,3haa) with different R-groups on the α- and ß-carbons of the same amino acid. Incorporation of these ß2,3haa enables increased diversity in a single position of a macrocyclic peptide without significantly increasing the overall molecular weight, which is an important consideration for passive cell permeability. We also successfully incorporated multiple (S)-ß2hAla into a single macrocycle with other non-proteinogenic amino acids, confirming that this class of ß-amino acid is suitable for development of large scale macrocyclic peptide libraries.
Asunto(s)
Compuestos Macrocíclicos/metabolismo , Biblioteca de Péptidos , Péptidos/metabolismo , Ribosomas/metabolismo , Acilación , Aminación , Aminoácidos/química , Aminoácidos/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Compuestos Macrocíclicos/química , Péptidos/química , EstereoisomerismoRESUMEN
The systematic discovery of functional fragments binding to the composite interface of protein complexes is a first critical step for the development of orthosteric stabilizers of protein-protein interactions (PPIs). We have previously shown that disulfide trapping successfully yielded covalent stabilizers for the PPI of 14-3-3 with the estrogen receptor ERα. Here we provide an assessment of the composite PPI target pocket and the molecular characteristics of various fragments binding to a specific subpocket. Evaluating structure-activity relationships highlights the basic principles for PPI stabilization by these covalent fragments that engage a relatively large and exposed binding pocket at the protein/peptide interface with a "molecular glue" mode of action.
RESUMEN
We report the refinement of a high-throughput, liquid chromatography/mass spectrometry (LC/MS)-based screening method for the identification of covalent small-molecule binders to proteins. Using a custom library of 1600 disulfide-capped fragments targeting surface cysteine residues, we optimize sample preparation, chromatography, and ionization conditions to maximize the reliability and flexibility of the approach. Data collection at a rate of 84 s per sample balances speed with reliability for sustained screening over multiple, diverse projects run over a 24-month period. The method is applicable to protein targets of various classes and a range of molecular masses. Data are processed in a custom pipeline that calculates a percent bound value for each compound and identifies false positives by calculating significance of detected masses (signal significance). An example pipeline is available through Biovia's ScienceCloud Protocol Exchange. Data collection and analysis methods for the screening of covalent adducts of intact proteins are now fast enough to screen the largest covalent compound libraries in 1 to 2 days.
Asunto(s)
Cromatografía Liquida/métodos , Disulfuros/química , Espectrometría de Masas/métodos , Cisteína/química , Proteínas/química , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/químicaRESUMEN
The targeting of non-catalytic cysteine residues with small molecules is drawing increased attention from drug discovery scientists and chemical biologists. From a biological perspective, genomic and proteomic studies have revealed the presence of cysteine mutations in several oncogenic proteins, suggesting both a functional role for these residues and also a strategy for targeting them in an 'allele specific' manner. For the medicinal chemist, the structure-guided design of cysteine- reactive molecules is an appealing strategy to realize improved selectivity and pharmacodynamic properties in drug leads. Finally, for chemical biologists, the modification of cysteine residues provides a unique means to probe protein structure and allosteric regulation. Here, we review three applications of cysteinemodifying small molecules: 1) the optimization of existing drug leads, 2) the discovery of new lead compounds, and 3) the use of cysteine-reactive molecules as probes of protein dynamics. In each case, structure-guided design plays a key role in determining which cysteine residue(s) to target and in designing compounds with the proper geometry to enable both covalent interaction with the targeted cysteine and productive non-covalent interactions with nearby protein residues.