Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Neurosci ; 23(12): 1655-1665, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33230329

RESUMEN

Electrophysiological signals exhibit both periodic and aperiodic properties. Periodic oscillations have been linked to numerous physiological, cognitive, behavioral and disease states. Emerging evidence demonstrates that the aperiodic component has putative physiological interpretations and that it dynamically changes with age, task demands and cognitive states. Electrophysiological neural activity is typically analyzed using canonically defined frequency bands, without consideration of the aperiodic (1/f-like) component. We show that standard analytic approaches can conflate periodic parameters (center frequency, power, bandwidth) with aperiodic ones (offset, exponent), compromising physiological interpretations. To overcome these limitations, we introduce an algorithm to parameterize neural power spectra as a combination of an aperiodic component and putative periodic oscillatory peaks. This algorithm requires no a priori specification of frequency bands. We validate this algorithm on simulated data, and demonstrate how it can be used in applications ranging from analyzing age-related changes in working memory to large-scale data exploration and analysis.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Periodicidad , Adulto , Anciano , Envejecimiento/psicología , Algoritmos , Animales , Cognición/fisiología , Electroencefalografía , Femenino , Humanos , Macaca mulatta , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino , Memoria a Corto Plazo , Persona de Mediana Edad , Desempeño Psicomotor/fisiología , Reproducibilidad de los Resultados , Adulto Joven
2.
Nat Hum Behav ; 2(1): 80-91, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29963646

RESUMEN

How do humans flexibly respond to changing environmental demands on a sub-second temporal scale? Extensive research has highlighted the key role of the prefrontal cortex in flexible decision-making and adaptive behavior, yet the core mechanisms that translate sensory information into behavior remain undefined. Utilizing direct human cortical recordings, we investigated the temporal and spatial evolution of neuronal activity, indexed by the broadband gamma signal, while sixteen participants performed a broad range of self-paced cognitive tasks. Here we describe a robust domain- and modality-independent pattern of persistent stimulus-to-response neural activation that encodes stimulus features and predicts motor output on a trial-by-trial basis with near-perfect accuracy. Observed across a distributed network of brain areas, this persistent neural activation is centered in the prefrontal cortex and is required for successful response implementation, providing a functional substrate for domain-general transformation of perception into action, critical for flexible behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA