Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Neurochem Res ; 47(9): 2656-2666, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35307777

RESUMEN

Activity-regulated cytoskeleton-associated (Arc) protein plays key roles in long-term synaptic plasticity, memory, and cognitive flexibility. However, an integral understanding of Arc mechanisms is lacking. Arc is proposed to function as an interaction hub in neuronal dendrites and the nucleus, yet Arc can also form retrovirus-like capsids with proposed roles in intercellular communication. Here, we sought to develop anti-Arc nanobodies (ArcNbs) as new tools for probing Arc dynamics and function. Six ArcNbs representing different clonal lines were selected from immunized alpaca. Immunoblotting with recombinant ArcNbs fused to a small ALFA-epitope tag demonstrated binding to recombinant Arc as well as endogenous Arc from rat cortical tissue. ALFA-tagged ArcNb also provided efficient immunoprecipitation of stimulus-induced Arc after carbachol-treatment of SH-SY5Y neuroblastoma cells and induction of long-term potentiation in the rat dentate gyrus in vivo. Epitope mapping showed that all Nbs recognize the Arc C-terminal region containing the retroviral Gag capsid homology domain, comprised of tandem N- and C-lobes. ArcNbs E5 and H11 selectively bound the N-lobe, which harbors a peptide ligand binding pocket specific to mammals. Four additional ArcNbs bound the region containing the C-lobe and C-terminal tail. For use as genetically encoded fluorescent intrabodies, we show that ArcNbs fused to mScarlet-I are uniformly expressed, without aggregation, in the cytoplasm and nucleus of HEK293FT cells. Finally, mScarlet-I-ArcNb H11 expressed as intrabody selectively bound the N-lobe and enabled co-immunoprecipitation of full-length intracellular Arc. ArcNbs are versatile tools for live-cell labeling and purification of Arc, and interrogation of Arc capsid domain specific functions.


Asunto(s)
Neuroblastoma , Anticuerpos de Dominio Único , Animales , Proteínas del Citoesqueleto/metabolismo , Humanos , Potenciación a Largo Plazo/fisiología , Mamíferos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Ratas
2.
J Neurochem ; 148(2): 291-306, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30411798

RESUMEN

Tyrosine hydroxylase (TH) is a multi-domain, homo-oligomeric enzyme that catalyses the rate-limiting step of catecholamine neurotransmitter biosynthesis. Missense variants of human TH are associated with a recessive neurometabolic disease with low levels of brain dopamine and noradrenaline, resulting in a variable clinical picture, from progressive brain encephalopathy to adolescent onset DOPA-responsive dystonia (DRD). We expressed isoform 1 of human TH (hTH1) and its dystonia-associated missense variants in E. coli, analysed their quaternary structure and thermal stability using size-exclusion chromatography, circular dichroism, multi-angle light scattering, transmission electron microscopy, small-angle X-ray scattering and assayed hydroxylase activity. Wild-type (WT) hTH1 was a mixture of enzymatically stable tetramers (85.6%) and octamers (14.4%), with little interconversion between these species. We also observed small amounts of higher order assemblies of long chains of enzyme by transmission electron microscopy. To investigate the role of molecular assemblies in the pathogenesis of DRD, we compared the structure of WT hTH1 with the DRD-associated variants R410P and D467G that are found in vicinity of the predicted subunit interfaces. In contrast to WT hTH1, R410P and D467G were mixtures of tetrameric and dimeric species. Inspection of the available structures revealed that Arg-410 and Asp-467 are important for maintaining the stability and oligomeric structure of TH. Disruption of the normal quaternary enzyme structure by missense variants is a new molecular mechanism that may explain the loss of TH enzymatic activity in DRD. Unstable missense variants could be targets for pharmacological intervention in DRD, aimed to re-establish the normal oligomeric state of TH.


Asunto(s)
Trastornos Distónicos/genética , Tirosina 3-Monooxigenasa/química , Tirosina 3-Monooxigenasa/genética , Humanos , Mutación Missense , Estructura Cuaternaria de Proteína
3.
J Neurochem ; 147(3): 323-343, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30028513

RESUMEN

The activity-regulated cytoskeleton-associated protein (ARC) is critical for long-term synaptic plasticity and memory formation. Acting as a protein interaction hub, ARC regulates diverse signalling events in postsynaptic neurons. A protein interaction site is present in the ARC C-terminal domain (CTD), a bilobar structure homologous to the retroviral Gag capsid domain. We hypothesized that detailed knowledge of the three-dimensional molecular structure of monomeric full-length ARC is crucial to understand its function; therefore, we set out to determine the structure of ARC to understand its various functional modalities. We purified recombinant ARC and analyzed its structure using small-angle X-ray scattering and synchrotron radiation circular dichroism spectroscopy. Monomeric full-length ARC has a compact, closed structure, in which the oppositely charged N-terminal domain (NTD) and CTD are juxtaposed, and the flexible linker between them is not extended. The modeled structure of ARC is supported by intramolecular live-cell Förster resonance energy transfer imaging in rat hippocampal slices. Peptides from several postsynaptic proteins, including stargazin, bind to the N-lobe, but not to the C-lobe, of the bilobar CTD. This interaction does not induce large-scale conformational changes in the CTD or flanking unfolded regions. The ARC NTD contains long helices, predicted to form an anti-parallel coiled coil; binding of ARC to phospholipid membranes requires the NTD. Our data support a role for the ARC NTD in oligomerization as well as lipid membrane binding. The findings have important implications for the structural organization of ARC with respect to distinct functions, such as postsynaptic signal transduction and virus-like capsid formation. Open Practices Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Asunto(s)
Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/fisiología , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/fisiología , Animales , Dicroismo Circular , Transferencia Resonante de Energía de Fluorescencia , Hipocampo/química , Humanos , Masculino , Modelos Moleculares , Estructura Molecular , Neuronas/química , Neuronas/ultraestructura , Conformación Proteica , Dominios Proteicos , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes , Dispersión de Radiación , Rayos X
4.
BMC Struct Biol ; 18(1): 8, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29940944

RESUMEN

BACKGROUND: Myelin is a multilayered proteolipid sheath wrapped around selected axons in the nervous system. Its constituent proteins play major roles in forming of the highly regular membrane structure. P2 is a myelin-specific protein of the fatty acid binding protein (FABP) superfamily, which is able to stack lipid bilayers together, and it is a target for mutations in the human inherited neuropathy Charcot-Marie-Tooth disease. A conserved residue that has been proposed to participate in membrane and fatty acid binding and conformational changes in FABPs is Phe57. This residue is thought to be a gatekeeper for the opening of the portal region upon ligand entry and egress. RESULTS: We performed a structural characterization of the F57A mutant of human P2. The mutant protein was crystallized in three crystal forms, all of which showed changes in the portal region and helix α2. In addition, the behaviour of the mutant protein upon lipid bilayer binding suggested more unfolding than previously observed for wild-type P2. On the other hand, membrane binding rendered F57A heat-stable, similarly to wild-type P2. Atomistic molecular dynamics simulations showed opening of the side of the discontinuous ß barrel, giving important indications on the mechanism of portal region opening and ligand entry into FABPs. The results suggest a central role for Phe57 in regulating the opening of the portal region in human P2 and other FABPs, and the F57A mutation disturbs dynamic cross-correlation networks in the portal region of P2. CONCLUSIONS: Overall, the F57A variant presents similar properties to the P2 patient mutations recently linked to Charcot-Marie-Tooth disease. Our results identify Phe57 as a residue regulating conformational changes that may accompany membrane surface binding and ligand exchange in P2 and other FABPs.


Asunto(s)
Ácidos Grasos/metabolismo , Mutación , Proteína P2 de Mielina/química , Proteína P2 de Mielina/metabolismo , Rastreo Diferencial de Calorimetría , Enfermedad de Charcot-Marie-Tooth/genética , Cristalografía por Rayos X , Humanos , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Proteína P2 de Mielina/genética , Fenilalanina/genética , Estructura Secundaria de Proteína , Desplegamiento Proteico
6.
Anal Chim Acta ; 1313: 342789, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38862206

RESUMEN

BACKGROUND: Therapeutic drug monitoring of treatment with therapeutic antibodies is hampered by the application of a wide range of different methods in the quantification of serum levels. LC-MS based methods could significantly improve comparability of results from different laboratories, but such methods are often considered complicated and costly. We developed a method for LC-MS/MS based quantification of 11 therapeutic antibodies concomitantly measured in a single run, with emphasis on simplicity in sample preparation and low cost. RESULTS: After a single-step sample purification using caprylic acid precipitation to remove interfering proteins, the sample underwent proteolysis followed by LC-MS/MS analysis. Infliximab is used as internal standard for sample preparation while isotope-labeled signature peptides identified for each analyte are internal standards for the LC-MS/MS normalization. The method was validated according to recognized guidelines, and pipetting steps can be performed by automated liquid handling systems. The total precision of the method ranged between 2.7 and 7.3 % (5.1 % average) across the quantification range of 4-256 µg/ml for all 11 drugs, with an average accuracy of 96.3 %. Matrix effects were xamined in 55 individual patient samples instead of the recommended 6, and 147 individual patient samples were screened for interfering compounds. SIGNIFICANCE AND NOVELTY: Our method for simultaneous quantification of 11 t-mAb in human serum allows an unprecedented integration of robustness, speed and reduced complexity, which could pave the way for uniform use in research projects and clinical settings alike. In addition, the first LC-MS protocol for signature peptide-based quantification of durvalumab is described. This high throughput method can be readily adapted to a drug panel of choice.


Asunto(s)
Caprilatos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/economía , Humanos , Caprilatos/química , Caprilatos/sangre , Precipitación Química , Cromatografía Liquida/métodos , Ensayos Analíticos de Alto Rendimiento/economía , Anticuerpos Monoclonales/sangre , Anticuerpos Monoclonales/química , Cromatografía Líquida con Espectrometría de Masas
7.
J Mass Spectrom Adv Clin Lab ; 25: 53-60, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35910410

RESUMEN

Introduction: Ocrelizumab is a monoclonal anti-CD20 antibody approved for the treatment of multiple sclerosis (MS). The clinical value of therapeutic drug monitoring (TDM) for this antibody in treatment of MS is unknown, and an adequately specific and precise quantitation method for ocrelizumab in patient serum could facilitate investigation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based quantitation methods have been shown to have higher analytic specificity and precision than enzyme-linked immunosorbent assays. Objectives: To establish and validate an LC-MS/MS-based quantitation method for ocrelizumab. Methods: We present an LC-MS/MS-based quantitation method using immunocapture purification followed by trypsinization and analysis by a triple quadrupole mass analyzer obtaining results within the same day. Results: We found that the ocrelizumab peptide GLEWVGAIYPGNGDTSYNQK (Q1/Q3 Quantifier ion: 723.683+/590.77 y112+ Qualifier ion: 723.683+/672.30 y122+) can be used for quantitation and thereby developed a method for quantifying ocrelizumab in human serum with a quantitation range of 1.56 to 200 µg/mL. The method was validated in accordance with EMA requirements in terms of selectivity, carry-over, lower limit of quantitation, calibration curve, accuracy, precision and matrix effect. Ocrelizumab serum concentrations were measured in three MS patients treated with ocrelizumab, immediately before and after ocrelizumab infusion, with additional sampling after 2, 4, 8 and 12 weeks. Measured serum concentrations of ocrelizumab showed expected values for both Cmax and drug half-life over the sampled time period. Conclusion: We have established a reliable quantitation method for serum ocrelizumab that can be applied in clinical studies, facilitating the evaluation of ocrelizumab TDM in MS.

8.
PLoS One ; 17(6): e0269281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35671319

RESUMEN

Activity-regulated cytoskeleton-associated protein (Arc) is a multidomain protein of retroviral origin with a vital role in the regulation of synaptic plasticity and memory formation in mammals. However, the mechanistic and structural basis of Arc function is poorly understood. Arc has an N-terminal domain (NTD) involved in membrane binding and a C-terminal domain (CTD) that binds postsynaptic protein ligands. In addition, the NTD and CTD both function in Arc oligomerisation, including assembly of retrovirus-like capsids involved in intercellular signalling. To obtain new tools for studies on Arc structure and function, we produced and characterised six high-affinity anti-Arc nanobodies (Nb). The CTD of rat and human Arc were both crystallised in ternary complexes with two Nbs. One Nb bound deep into the stargazin-binding pocket of Arc CTD and suggested competitive binding with Arc ligand peptides. The crystallisation of the human Arc CTD in two different conformations, accompanied by SAXS data and molecular dynamics simulations, paints a dynamic picture of the mammalian Arc CTD. The collapsed conformation closely resembles Drosophila Arc in capsids, suggesting that we have trapped a capsid-like conformation of the human Arc CTD. Our data obtained with the help of anti-Arc Nbs suggest that structural dynamics of the CTD and dimerisation of the NTD may promote the formation of capsids. Taken together, the recombinant high-affinity anti-Arc Nbs are versatile tools that can be further developed for studying mammalian Arc structure and function, as well as mechanisms of Arc capsid formation, both in vitro and in vivo. For example, the Nbs could serve as a genetically encoded tools for inhibition of endogenous Arc interactions in the study of neuronal function and plasticity.


Asunto(s)
Anticuerpos de Dominio Único , Animales , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Drosophila/metabolismo , Mamíferos/metabolismo , Ratas , Dispersión del Ángulo Pequeño , Anticuerpos de Dominio Único/metabolismo , Difracción de Rayos X
9.
Biochem Biophys Rep ; 26: 100975, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33732907

RESUMEN

The activity-regulated cytoskeleton-associated protein (Arc) is important for synaptic plasticity and the normal function of the brain. Arc interacts with neuronal postsynaptic proteins, but the mechanistic details of its function have not been fully established. The C-terminal domain of Arc consists of tandem domains, termed the N- and C-lobe. The N-lobe harbours a peptide binding site, able to bind multiple targets. By measuring the affinity of human Arc towards various peptides from stargazin and guanylate kinase-associated protein (GKAP), we have refined its specificity determinants. We found two sites in the GKAP repeat region that bind to Arc and confirmed these interactions by X-ray crystallography. Phosphorylation of the stargazin peptide did not affect binding affinity but caused changes in thermodynamic parameters. Comparison of the crystal structures of three high-resolution human Arc-peptide complexes identifies three conserved C-H…π interactions at the binding cavity, explaining the sequence specificity of short linear motif binding by Arc. We further characterise central residues of the Arc lobe fold, show the effects of peptide binding on protein dynamics, and identify acyl carrier proteins as structures similar to the Arc lobes. We hypothesise that Arc may affect protein-protein interactions and phase separation at the postsynaptic density, affecting protein turnover and re-modelling of the synapse. The present data on Arc structure and ligand binding will help in further deciphering these processes.

10.
PLoS One ; 16(5): e0251459, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33989344

RESUMEN

Synaptic plasticity is vital for brain function and memory formation. One of the key proteins in long-term synaptic plasticity and memory is the activity-regulated cytoskeleton-associated protein (Arc). Mammalian Arc forms virus-like capsid structures in a process requiring the N-terminal domain and contains two C-terminal lobes that are structural homologues to retroviral capsids. Drosophila has two isoforms of Arc, dArc1 and dArc2, with low sequence similarity to mammalian Arc, but lacking a large N-terminal domain. Both dArc isoforms are related to the Ty3/gypsy retrotransposon capsid, consisting of N- and C-terminal lobes. Structures of dArc1, as well as capsids formed by both dArc isoforms, have been recently determined. We carried out structural characterization of the four individual dArc lobe domains. As opposed to the corresponding mammalian Arc lobe domains, which are monomeric, the dArc lobes were all oligomeric in solution, indicating a strong propensity for homophilic interactions. A truncated N-lobe from dArc2 formed a domain-swapped dimer in the crystal structure, resulting in a novel dimer interaction that could be relevant for capsid assembly or other dArc functions. This domain-swapped structure resembles the dimeric protein C of flavivirus capsids, as well as the structure of histones dimers, domain-swapped transcription factors, and membrane-interacting BAK domains. The strong oligomerization properties of the isolated dArc lobe domains explain the ability of dArc to form capsids in the absence of any large N-terminal domain, in contrast to the mammalian protein.


Asunto(s)
Proteínas del Citoesqueleto/química , Drosophila/química , Proteínas del Tejido Nervioso/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína
11.
FEBS J ; 288(9): 2930-2955, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33175445

RESUMEN

Activity-regulated cytoskeleton-associated protein (Arc) is a protein interaction hub with diverse roles in intracellular neuronal signaling, and important functions in neuronal synaptic plasticity, memory, and postnatal cortical development. Arc has homology to retroviral Gag protein and is capable of self-assembly into virus-like capsids implicated in the intercellular transfer of RNA. However, the molecular basis of Arc self-association and capsid formation is largely unknown. Here, we identified a 28-amino-acid stretch in the mammalian Arc N-terminal (NT) domain that is necessary and sufficient for self-association. Within this region, we identified a 7-residue oligomerization motif, critical for the formation of virus-like capsids. Purified wild-type Arc formed capsids as shown by transmission and cryo-electron microscopy, whereas mutant Arc with disruption of the oligomerization motif formed homogenous dimers. An atomic-resolution crystal structure of the oligomerization region peptide demonstrated an antiparallel coiled-coil interface, strongly supporting NT-NT domain interactions in Arc oligomerization. The NT coil-coil interaction was also validated in live neurons using fluorescence lifetime FRET imaging, and mutation of the oligomerization motif disrupted Arc-facilitated endocytosis. Furthermore, using single-molecule photobleaching, we show that Arc mRNA greatly enhances higher-order oligomerization in a manner dependent on the oligomerization motif. In conclusion, a helical coil in the Arc NT domain supports self-association above the dimer stage, mRNA-induced oligomerization, and formation of virus-like capsids. DATABASE: The coordinates and structure factors for crystallographic analysis of the oligomerization region were deposited at the Protein Data Bank with the entry code 6YTU.


Asunto(s)
Secuencias de Aminoácidos/genética , Proteínas del Citoesqueleto/ultraestructura , Proteínas de Drosophila/genética , Proteínas del Tejido Nervioso/ultraestructura , Neuronas/metabolismo , Conformación Proteica , Animales , Proteínas de la Cápside/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/ultraestructura , Humanos , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Dominios Proteicos/genética , ARN/genética , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Virión/genética
12.
Cell Rep ; 29(11): 3620-3635.e7, 2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31825840

RESUMEN

The translation initiation repressor 4E-BP2 is deamidated in the brain on asparagines N99/N102 during early postnatal brain development. This post-translational modification enhances 4E-BP2 association with Raptor, a central component of mTORC1 and alters the kinetics of excitatory synaptic transmission. We show that 4E-BP2 deamidation is neuron specific, occurs in the human brain, and changes 4E-BP2 subcellular localization, but not its disordered structure state. We demonstrate that deamidated 4E-BP2 is ubiquitinated more and degrades faster than the unmodified protein. We find that enhanced deamidated 4E-BP2 degradation is dependent on Raptor binding, concomitant with increased association with a Raptor-CUL4B E3 ubiquitin ligase complex. Deamidated 4E-BP2 stability is promoted by inhibiting mTORC1 or glutamate receptors. We further demonstrate that deamidated 4E-BP2 regulates the translation of a distinct pool of mRNAs linked to cerebral development, mitochondria, and NF-κB activity, and thus may be crucial for postnatal brain development in neurodevelopmental disorders, such as ASD.


Asunto(s)
Factores Eucarióticos de Iniciación/metabolismo , FN-kappa B/metabolismo , Neuronas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína Reguladora Asociada a mTOR/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Células Cultivadas , Proteínas Cullin/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Proteolisis
13.
PLoS One ; 14(6): e0216833, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31173589

RESUMEN

Schwann cells myelinate selected axons in the peripheral nervous system (PNS) and contribute to fast saltatory conduction via the formation of compact myelin, in which water is excluded from between tightly adhered lipid bilayers. Peripheral neuropathies, such as Charcot-Marie-Tooth disease (CMT) and Dejerine-Sottas syndrome (DSS), are incurable demyelinating conditions that result in pain, decrease in muscle mass, and functional impairment. Many Schwann cell proteins, which are directly involved in the stability of compact myelin or its development, are subject to mutations linked to these neuropathies. The most abundant PNS myelin protein is protein zero (P0); point mutations in this transmembrane protein cause CMT subtype 1B and DSS. P0 tethers apposing lipid bilayers together through its extracellular immunoglobulin-like domain. Additionally, P0 contains a cytoplasmic tail (P0ct), which is membrane-associated and contributes to the physical properties of the lipid membrane. Six CMT- and DSS-associated missense mutations have been reported in P0ct. We generated recombinant disease mutant variants of P0ct and characterized them using biophysical methods. Compared to wild-type P0ct, some mutants have negligible differences in function and folding, while others highlight functionally important amino acids within P0ct. For example, the D224Y variant of P0ct induced tight membrane multilayer stacking. Our results show a putative molecular basis for the hypermyelinating phenotype observed in patients with this particular mutation and provide overall information on the effects of disease-linked mutations in a flexible, membrane-binding protein segment. Using neutron reflectometry, we additionally show that P0ct embeds deep into a lipid bilayer, explaining the observed effects of P0ct on the physical properties of the membrane.


Asunto(s)
Membrana Celular/metabolismo , Citoplasma/metabolismo , Mutación , Proteína P0 de la Mielina/genética , Proteína P0 de la Mielina/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Humanos , Membrana Dobles de Lípidos/metabolismo , Proteína P0 de la Mielina/química , Fenotipo , Unión Proteica , Pliegue de Proteína
14.
Sci Rep ; 8(1): 517, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29311740

RESUMEN

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

15.
Sci Rep ; 7(1): 6510, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28747762

RESUMEN

Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neuropathies. Recently, three CMT1-associated point mutations (I43N, T51P, and I52T) were discovered in the abundant peripheral myelin protein P2. These mutations trigger abnormal myelin structure, leading to reduced nerve conduction velocity, muscle weakness, and distal limb atrophy. P2 is a myelin-specific protein expressed by Schwann cells that binds to fatty acids and membranes, contributing to peripheral myelin lipid homeostasis. We studied the molecular basis of the P2 patient mutations. None of the CMT1-associated mutations alter the overall folding of P2 in the crystal state. P2 disease variants show increased aggregation tendency and remarkably reduced stability, T51P being most severe. In addition, P2 disease mutations affect protein dynamics. Both fatty acid binding by P2 and the kinetics of its membrane interactions are affected by the mutations. Experiments and simulations suggest opening of the ß barrel in T51P, possibly representing a general mechanism in fatty acid-binding proteins. Our findings demonstrate that altered biophysical properties and functional dynamics of P2 may cause myelin defects in CMT1 patients. At the molecular level, a few malformed hydrogen bonds lead to structural instability and misregulation of conformational changes related to ligand exchange and membrane binding.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Mutación Missense , Proteína P2 de Mielina/genética , Proteína P2 de Mielina/metabolismo , Fenómenos Biofísicos , Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteína P2 de Mielina/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA