Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 77(5): 951-969.e9, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31995728

RESUMEN

AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Metabolismo Energético , Galectinas/metabolismo , Lisosomas/enzimología , Ubiquitina/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Adolescente , Adulto , Animales , Autofagia/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Activación Enzimática , Femenino , Galectinas/genética , Células HEK293 , Células HeLa , Humanos , Hipoglucemiantes/farmacología , Lisosomas/efectos de los fármacos , Lisosomas/microbiología , Lisosomas/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Metformina/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/patogenicidad , Transducción de Señal , Células THP-1 , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Adulto Joven
2.
Cell ; 142(2): 270-83, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20655468

RESUMEN

Mechanisms that regulate cellular metabolism are a fundamental requirement of all cells. Most eukaryotic cells rely on aerobic mitochondrial metabolism to generate ATP. Nevertheless, regulation of mitochondrial activity is incompletely understood. Here we identified an unexpected and essential role for constitutive InsP(3)R-mediated Ca(2+) release in maintaining cellular bioenergetics. Macroautophagy provides eukaryotes with an adaptive response to nutrient deprivation that prolongs survival. Constitutive InsP(3)R Ca(2+) signaling is required for macroautophagy suppression in cells in nutrient-replete media. In its absence, cells become metabolically compromised due to diminished mitochondrial Ca(2+) uptake. Mitochondrial uptake of InsP(3)R-released Ca(2+) is fundamentally required to provide optimal bioenergetics by providing sufficient reducing equivalents to support oxidative phosphorylation. Absence of this Ca(2+) transfer results in enhanced phosphorylation of pyruvate dehydrogenase and activation of AMPK, which activates prosurvival macroautophagy. Thus, constitutive InsP(3)R Ca(2+) release to mitochondria is an essential cellular process that is required for efficient mitochondrial respiration and maintenance of normal cell bioenergetics.


Asunto(s)
Linfocitos B/metabolismo , Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Animales , Autofagia , Calcio/metabolismo , Línea Celular , Pollos , Técnicas de Inactivación de Genes
3.
Biomacromolecules ; 25(5): 2749-2761, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38652072

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is a complex disorder characterized by uncontrolled renal cyst growth, leading to kidney function decline. The multifaceted nature of ADPKD suggests that single-pathway interventions using individual small molecule drugs may not be optimally effective. As such, a strategy encompassing combination therapy that addresses multiple ADPKD-associated signaling pathways could offer synergistic therapeutic results. However, severe off-targeting side effects of small molecule drugs pose a major hurdle to their clinical transition. To address this, we identified four drug candidates from ADPKD clinical trials, bardoxolone methyl (Bar), octreotide (Oct), salsalate (Sal), and pravastatin (Pra), and incorporated them into peptide amphiphile micelles containing the RGD peptide (GRGDSP), which binds to the basolateral surface of renal tubules via integrin receptors on the extracellular matrix. We hypothesized that encapsulating drug combinations into RGD micelles would enable targeting to the basolateral side of renal tubules, which is the site of disease, via renal secretion, leading to superior therapeutic benefits compared to free drugs. To test this, we first evaluated the synergistic effect of drug combinations using the 20% inhibitory concentration for each drug (IC20) on renal proximal tubule cells derived from Pkd1flox/-:TSLargeT mice. Next, we synthesized and characterized the RGD micelles encapsulated with drug combinations and measured their in vitro therapeutic effects via a 3D PKD growth model. Upon both IV and IP injections in vivo, RGD micelles showed a significantly higher accumulation in the kidneys compared to NT micelles, and the renal access of RGD micelles was significantly reduced after the inhibition of renal secretion. Specifically, both Bar+Oct and Bar+Sal in the RGD micelle treatment showed enhanced therapeutic efficacy in ADPKD mice (Pkd1fl/fl;Pax8-rtTA;Tet-O-Cre) with a significantly lower KW/BW ratio and cyst index as compared to PBS and free drug-treated controls, while other combinations did not show a significant difference. Hence, we demonstrate that renal targeting through basolateral targeting micelles enhances the therapeutic potential of combination therapy in genetic kidney disease.


Asunto(s)
Sistemas de Liberación de Medicamentos , Micelas , Animales , Ratones , Sistemas de Liberación de Medicamentos/métodos , Humanos , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/patología , Oligopéptidos/química , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/patología
4.
Am J Physiol Renal Physiol ; 322(1): F27-F41, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34806449

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in the polycystin 1 (PKD1) or polycystin 2 genes, presents with progressive development of kidney cysts and eventual end-stage kidney disease with limited treatment options. Previous work has shown that metformin reduces cyst growth in rapid ADPKD mouse models via inhibition of cystic fibrosis transmembrane conductance regulator-mediated fluid secretion, mammalian target of rapamycin, and cAMP pathways. The present study importantly tested the effectiveness of metformin as a therapy for ADPKD in a more clinically relevant Pkd1RC/RC mouse model, homozygous for the R3277C knockin point mutation in the Pkd1 gene. This mutation causes ADPKD in humans. Pkd1RC/RC male and female mice, which have a slow progression to end-stage kidney disease, received metformin (300 mg/kg/day in drinking water vs. water alone) from 3 to 9 or 12 mo of age. As previously reported, Pkd1RC/RC females had a more severe disease phenotype as compared with males. Metformin treatment reduced the ratio of total kidney weight-to-body weight relative to age-matched and sex-matched untreated controls at both 9 and 12 mo and reduced the cystic index in females at 9 mo. Metformin also increased glomerular filtration rate, lowered systolic blood pressure, improved anemia, and lowered blood urea nitrogen levels relative to controls in both sexes. Moreover, metformin reduced gene expression of key inflammatory markers and both gene and protein expression of kidney injury marker-1 and cyclin-dependent kinase-1 versus untreated controls. Altogether, these findings suggest several beneficial effects of metformin in this highly relevant slowly progressive ADPKD mouse model, which may help inform new ADPKD therapies in patients.NEW & NOTEWORTHY Metformin treatment improved ADPKD disease severity in a relevant, slowly progressive ADPKD mouse model that recapitulates a PKD-associated PKD1 mutation. Relative to controls, metformin reduced kidney weight/body weight, cystic index and BUN levels, while improving GFR, blood pressure and anemia. Metformin also reduced key inflammatory and injury markers, along with cell proliferation markers. These findings suggest several beneficial effects of metformin in this ADPKD mouse model, which may help inform new ADPKD therapies in patients.


Asunto(s)
Fallo Renal Crónico/prevención & control , Riñón/efectos de los fármacos , Metformina/farmacología , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Fármacos Renales/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Tasa de Filtración Glomerular/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Riñón/metabolismo , Riñón/patología , Riñón/fisiopatología , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/patología , Fallo Renal Crónico/fisiopatología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/fisiopatología , Canales Catiónicos TRPP/genética , Factores de Tiempo
5.
Kidney Int ; 100(3): 684-696, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34186056

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by growth of kidney cysts and glomerular filtration rate (GFR) decline. Metformin was found to impact cystogenesis in preclinical models of polycystic disease, is generally considered safe and may be a promising candidate for clinical investigation in ADPKD. In this phase 2 two-year trial, we randomly assigned 97 patients, 18-60 years of age, with ADPKD and estimated GFR over 50 ml/min/1.73 m2, in a 1:1 ratio to receive metformin or placebo twice daily. Primary outcomes were medication safety and tolerability. Secondary outcomes included estimated GFR decline, and total kidney volume growth. Thirty-eight metformin and 39 placebo participants still received study product at 24-months. Twenty-one participants in the metformin arm reduced drug dose due to inability to tolerate, compared with 14 in the placebo arm (not significant). Proportions of participants experiencing serious adverse events was similar between the groups. The Gastrointestinal Symptoms Rating Scale score was low at baseline and did not significantly change over time. The annual change for estimated GFR was -1.71 with metformin and -3.07 ml/min/1.73m2 per year with placebo (mean difference 1.37 {-0.70, 3.44} ml/min/1.73m2), while mean annual percent change in height-adjusted total kidney volume was 3.87% in metformin and 2.16% per year in placebo, (mean difference 1.68% {-2.11, 5.62}). Thus, metformin in adults with ADPKD was found to be safe and tolerable while slightly reducing estimated GFR decline but not to a significant degree. Hence, evaluation of efficacy requires a larger trial, with sufficient power to detect differences in endpoints.


Asunto(s)
Quistes , Metformina , Riñón Poliquístico Autosómico Dominante , Adulto , Progresión de la Enfermedad , Tasa de Filtración Glomerular , Humanos , Riñón , Metformina/efectos adversos , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico
6.
FASEB J ; 34(5): 7036-7057, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32246808

RESUMEN

The purpose was to determine the role of AMPK activation in the renal metabolic response to sepsis, the development of sepsis-induced acute kidney injury (AKI) and on survival. In a prospective experimental study, 167 10- to 12-week-old C57BL/6 mice underwent cecal ligation and puncture (CLP) and human proximal tubule epithelial cells (TEC; HK2) were exposed to inflammatory mix (IM), a combination of lipopolysaccharide (LPS) and high mobility group box 1 (HMGB1). Renal/TEC metabolic fitness was assessed by monitoring the expression of drivers of oxidative phosphorylation (OXPHOS), the rates of utilization of OXPHOS/glycolysis in response to metabolic stress, and mitochondrial function by measuring O2 consumption rates (OCR) and the membrane potential (Δψm ). Sepsis/IM resulted in AKI, increased mortality, and in renal AMPK activation 6-24 hours after CLP/IM. Pharmacologic activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or metformin during sepsis improved the survival, while AMPK inhibition with Compound C increased mortality, impaired mitochondrial respiration, decreased OCR, and disrupted TEC metabolic fitness. AMPK-driven protection was associated with increased Sirt 3 expression and restoration of metabolic fitness. Renal AMPK activation in response to sepsis/IM is an adaptive mechanism that protects TEC, organs, and the host by preserving mitochondrial function and metabolic fitness likely through Sirt3 signaling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Inflamación/metabolismo , Riñón/metabolismo , Sepsis/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Lesión Renal Aguda/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Activación Enzimática , Células Epiteliales/metabolismo , Humanos , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Consumo de Oxígeno
7.
J Biol Chem ; 293(29): 11612-11624, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29858246

RESUMEN

Our previous work has established that the metabolic sensor AMP-activated protein kinase (AMPK) inhibits the epithelial Na+ channel (ENaC) by promoting its binding to neural precursor cell-expressed, developmentally down-regulated 4-2, E3 ubiquitin protein ligase (Nedd4-2). Here, using MS analysis and in vitro phosphorylation, we show that AMPK phosphorylates Nedd4-2 at the Ser-444 (Xenopus Nedd4-2) site critical for Nedd4-2 stability. We further demonstrate that the Pak-interacting exchange factor ß1Pix is required for AMPK-mediated inhibition of ENaC-dependent currents in both CHO and murine kidney cortical collecting duct (CCD) cells. Short hairpin RNA-mediated knockdown of ß1Pix expression in CCD cells attenuated the inhibitory effect of AMPK activators on ENaC currents. Moreover, overexpression of a ß1Pix dimerization-deficient mutant unable to bind 14-3-3 proteins (Δ602-611) increased ENaC currents in CCD cells, whereas overexpression of WT ß1Pix had the opposite effect. Using additional immunoblotting and co-immunoprecipitation experiments, we found that treatment with AMPK activators promoted the binding of ß1Pix to 14-3-3 proteins in CCD cells. However, the association between Nedd4-2 and 14-3-3 proteins was not consistently affected by AMPK activation, ß1Pix knockdown, or overexpression of WT ß1Pix or the ß1Pix-Δ602-611 mutant. Moreover, we found that ß1Pix is important for phosphorylation of the aforementioned Nedd4-2 site critical for its stability. Overall, these findings elucidate novel molecular mechanisms by which AMPK regulates ENaC. Specifically, they indicate that AMPK promotes the assembly of ß1Pix, 14-3-3 proteins, and Nedd4-2 into a complex that inhibits ENaC by enhancing Nedd4-2 binding to ENaC and its degradation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Células Epiteliales/metabolismo , Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Colectores/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas 14-3-3/metabolismo , Animales , Células CHO , Línea Celular , Cricetulus , Células Epiteliales/citología , Células HEK293 , Humanos , Túbulos Renales Colectores/citología , Ratones , Fosforilación
8.
Am J Physiol Renal Physiol ; 317(6): F1513-F1525, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31566435

RESUMEN

The metabolic sensor AMP-activated protein kinase (AMPK) inhibits the epithelial Na+ channel (ENaC), a key regulator of salt reabsorption by the kidney and thus total body volume and blood pressure. Recent studies have suggested that AMPK promotes the association of p21-activated kinase-interacting exchange factor-ß1 ß1Pix, 14-3-3 proteins, and the ubiquitin ligase neural precursor cell expressed developmentally downregulated protein (Nedd)4-2 into a complex that inhibits ENaC by enhancing Nedd4-2 binding to ENaC and ENaC degradation. Functional ß1Pix is required for ENaC inhibition by AMPK and promotes Nedd4-2 phosphorylation and stability in mouse kidney cortical collecting duct cells. Here, we report that AMPK directly phosphorylates ß1Pix in vitro. Among several AMPK phosphorylation sites on ß1Pix detected by mass spectrometry, Ser71 was validated as functionally significant. Compared with wild-type ß1Pix, overexpression of a phosphorylation-deficient ß1Pix-S71A mutant attenuated ENaC inhibition and the AMPK-activated interaction of both ß1Pix and Nedd4-2 to 14-3-3 proteins in cortical collecting duct cells. Similarly, overexpression of a ß1Pix-Δ602-611 deletion tract mutant unable to bind 14-3-3 proteins decreased the interaction between Nedd4-2 and 14-3-3 proteins, suggesting that 14-3-3 binding to ß1Pix is critical for the formation of a ß1Pix/Nedd4-2/14-3-3 complex. With expression of a general peptide inhibitor of 14-3-3-target protein interactions (R18), binding of both ß1Pix and Nedd4-2 to 14-3-3 proteins was reduced, and AMPK-dependent ENaC inhibition was also attenuated. Altogether, our results demonstrate the importance of AMPK-mediated phosphorylation of ß1Pix at Ser71, which promotes 14-3-3 interactions with ß1Pix and Nedd4-2 to form a tripartite ENaC inhibitory complex, in the mechanism of ENaC regulation by AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Células Epiteliales/metabolismo , Canales Epiteliales de Sodio/metabolismo , Riñón/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Regulación Enzimológica de la Expresión Génica/genética , Células HEK293 , Humanos , Túbulos Renales Colectores/metabolismo , Ratones , Mutación/genética , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Fosforilación , Factores de Intercambio de Guanina Nucleótido Rho/genética
9.
Am J Nephrol ; 47(5): 352-360, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29779024

RESUMEN

BACKGROUND: Metformin inhibits cyclic AMP generation and activates AMP-activated protein kinase (AMPK), which inhibits the cystic fibrosis transmembrane conductance regulator and Mammalian Target of Rapamycin pathways. Together these effects may reduce cyst growth in autosomal dominant polycystic kidney disease (ADPKD). METHODS: A phase II, double-blinded randomized placebo-controlled trial of 26 months duration. Participants will include nondiabetic adults (n = 96) aged 18-60 years, with an estimated glomerular filtration rate (eGFR) ≥50 mL/min/1.73 m2 and ADPKD, recruited from university-based practices in Baltimore and Boston. Participants will be randomized in 1: 1 ratio to metformin or placebo at 500 mg once daily, increased every 2 weeks to a maximum of 1,000 mg twice daily as tolerated. Dose is decreased if eGFR falls to 30-45 mL/min/1.73 m2 and discontinued at eGFR < 30 mL/min/1.73 m2. RESULTS: The primary outcomes are safety, assessed by the rates of hypoglycemia, elevated lactic acid levels, adverse events, and tolerability assessed by the Gastrointestinal Severity Rating Scale and maximum tolerated dose of study medication. Secondary outcomes include changes in total kidney and liver volumes, pain, and health-related quality of life, and changes in urinary metabolomic biomarkers. CONCLUSIONS: Results of this trial will provide important information on the feasibility, safety, and tolerability of long-term use of metformin in patients with -ADPKD and provide preliminary information regarding its efficacy in slowing disease progression. Furthermore, results may support or refute the hypothesis that metformin effects on disease progression are mediated through the activation of the AMPK pathway. These results will be essential for the justification and design of a full-scale efficacy trial.


Asunto(s)
Quistes/tratamiento farmacológico , Hepatopatías/tratamiento farmacológico , Metformina/administración & dosificación , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Adolescente , Adulto , Ensayos Clínicos Fase II como Asunto , Quistes/etiología , Quistes/patología , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Estudios de Factibilidad , Estudios de Seguimiento , Enfermedades Gastrointestinales/inducido químicamente , Enfermedades Gastrointestinales/epidemiología , Tasa de Filtración Glomerular , Humanos , Hipoglucemia/inducido químicamente , Hipoglucemia/epidemiología , Riñón/diagnóstico por imagen , Riñón/efectos de los fármacos , Riñón/patología , Hígado/diagnóstico por imagen , Hígado/efectos de los fármacos , Hígado/patología , Hepatopatías/etiología , Hepatopatías/patología , Imagen por Resonancia Magnética , Dosis Máxima Tolerada , Metformina/efectos adversos , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Tamaño de los Órganos/efectos de los fármacos , Placebos/administración & dosificación , Placebos/efectos adversos , Riñón Poliquístico Autosómico Dominante/complicaciones , Riñón Poliquístico Autosómico Dominante/patología , Ensayos Clínicos Controlados Aleatorios como Asunto , Proyectos de Investigación , Adulto Joven
10.
Curr Opin Nephrol Hypertens ; 26(5): 375-383, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28614117

RESUMEN

PURPOSE OF REVIEW: AMP-activated protein kinase (AMPK) is a metabolic sensor that regulates cellular energy balance, transport, growth, inflammation, and survival functions. This review explores recent work in defining the effects of AMPK on various renal tubular epithelial ion transport proteins as well as its role in kidney injury and repair in normal and disease states. RECENT FINDINGS: Recently, several groups have uncovered additional functions of AMPK in the regulation of kidney and transport proteins. These new studies have focused on the role of AMPK in the kidney in the setting of various diseases such as diabetes, which include evaluation of the effects of the hyperglycemic state on podocyte and tubular cell function. Other recent studies have investigated how reduced kidney mass, polycystic kidney disease (PKD), and fibrosis affect AMPK activation status. A general theme of several conditions that lead to chronic kidney disease (CKD) is that AMPK activity is abnormally suppressed relative to that in normal kidneys. Thus, the idea that AMPK activation may be a therapeutic strategy to slow down the progression of CKD has emerged. In addition to drugs such as metformin and 5-aminoimidazole-4-carboxamide ribonucleotide that are classically used as AMPK activators, recent studies have identified the therapeutic potential of other compounds that function at least partly as AMPK activators, such as salicylates, statins, berberine, and resveratrol, in preventing the progression of CKD. SUMMARY: AMPK in the kidney plays a unique role at the crossroads of energy metabolism, ion and water transport, inflammation, and stress. Its potential role in modulating recovery from vs. progression of acute and chronic kidney injury has been the topic of recent research findings. The continued study of AMPK in kidney physiology and disease has improved our understanding of these physiological and pathological processes and offers great hope for therapeutic avenues for the increasing population at risk to develop kidney failure.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Proteínas Portadoras/metabolismo , Diabetes Mellitus/enzimología , Riñón/enzimología , Riñón/patología , Insuficiencia Renal Crónica/enzimología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Transporte Biológico , Diabetes Mellitus/fisiopatología , Metabolismo Energético , Activación Enzimática/efectos de los fármacos , Fibrosis , Humanos , Túbulos Renales/enzimología , Podocitos/fisiología , Enfermedades Renales Poliquísticas/metabolismo , Insuficiencia Renal Crónica/prevención & control
11.
Am J Physiol Renal Physiol ; 310(11): F1216-28, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26911844

RESUMEN

Extracellular proton-secreting transport systems that contribute to extracellular pH include the vacuolar H(+)-ATPase (V-ATPase). This pump, which mediates ATP-driven transport of H(+) across membranes, is involved in metastasis. We previously showed (Alzamora R, Thali RF, Gong F, Smolak C, Li H, Baty CJ, Bertrand CA, Auchli Y, Brunisholz RA, Neumann D, Hallows KR, Pastor-Soler NM. J Biol Chem 285: 24676-24685, 2010) that V-ATPase A subunit phosphorylation at Ser-175 is important for PKA-induced V-ATPase activity at the membrane of kidney intercalated cells. However, Ser-175 is also located within a larger phosphorylation consensus sequence for Aurora kinases, which are known to phosphorylate proteins that contribute to the pathogenesis of metastatic carcinomas. We thus hypothesized that Aurora kinase A (AURKA), overexpressed in aggressive carcinomas, regulates the V-ATPase in human kidney carcinoma cells (Caki-2) via Ser-175 phosphorylation. We found that AURKA is abnormally expressed in Caki-2 cells, where it binds the V-ATPase A subunit in an AURKA phosphorylation-dependent manner. Treatment with the AURKA activator anacardic acid increased V-ATPase expression and activity at the plasma membrane of Caki-2 cells. In addition, AURKA phosphorylates the V-ATPase A subunit at Ser-175 in vitro and in Caki-2 cells. Immunolabeling revealed that anacardic acid induced marked membrane accumulation of the V-ATPase A subunit in transfected Caki-2 cells. However, anacardic acid failed to induce membrane accumulation of a phosphorylation-deficient Ser-175-to-Ala (S175A) A subunit mutant. Finally, S175A-expressing cells had decreased migration in a wound-healing assay compared with cells expressing wild-type or a phospho-mimetic Ser-175-to-Asp (S175D) mutant A subunit. We conclude that AURKA activates the V-ATPase in kidney carcinoma cells via phosphorylation of Ser-175 in the V-ATPase A subunit. This regulation contributes to kidney carcinoma V-ATPase-mediated extracellular acidification and cell migration.


Asunto(s)
Aurora Quinasa A/metabolismo , Carcinoma/metabolismo , Neoplasias Renales/metabolismo , Riñón/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Ácidos Anacárdicos/farmacología , Carcinoma/patología , Línea Celular Tumoral , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Neoplasias Renales/patología , Fosforilación/efectos de los fármacos
12.
Am J Physiol Renal Physiol ; 311(5): F890-F900, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27534994

RESUMEN

Aquaporin-2 (AQP2) is essential to maintain body water homeostasis. AQP2 traffics from intracellular vesicles to the apical membrane of kidney collecting duct principal cells in response to vasopressin [arginine vasopressin (AVP)], a hormone released with low intravascular volume, which causes decreased kidney perfusion. Decreased kidney perfusion activates AMP-activated kinase (AMPK), a metabolic sensor that inhibits the activity of several transport proteins. We hypothesized that AMPK activation also inhibits AQP2 function. These putative AMPK effects could protect interstitial ionic gradients required for urinary concentration during metabolic stress when low intravascular volume induces AVP release. Here we found that short-term AMPK activation by treatment with 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR; 75 min) in kidney tissue prevented baseline AQP2 apical accumulation in principal cells, but did not prevent AQP2 apical accumulation in response to the AVP analog desmopressin (dDAVP). Prolonged AMPK activation prevented AQP2 cell membrane accumulation in response to forskolin in mouse collecting duct mpkCCDc14 cells. Moreover, AMPK inhibition accelerated hypotonic lysis of Xenopus oocytes expressing AQP2. We performed phosphorylation assays to elucidate the mechanism by which AMPK regulates AQP2. Although AMPK weakly phosphorylated immunoprecipitated AQP2 in vitro, no direct AMPK phosphorylation of the AQP2 COOH-terminus was detected by mass spectrometry. AMPK promoted Ser-261 phosphorylation and antagonized dDAVP-dependent phosphorylation of other AQP2 COOH-terminal sites in cells. Our findings suggest an increasing, time-dependent antagonism of AMPK on AQP2 regulation with AICAR-dependent inhibition of cAMP-dependent apical accumulation and AVP-dependent phosphorylation of AQP2. This inhibition likely occurs via a mechanism that does not involve direct AQP2 phosphorylation by AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Acuaporina 2/metabolismo , Túbulos Renales Colectores/metabolismo , Riñón/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Línea Celular , Riñón/citología , Riñón/efectos de los fármacos , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/efectos de los fármacos , Masculino , Ratones , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Ribonucleótidos/farmacología , Xenopus
13.
Am J Physiol Renal Physiol ; 309(5): F414-28, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26136559

RESUMEN

Renal hypoxia contributes to chronic kidney disease (CKD) progression, as validated in experimental and human CKD. In the early stages, increased oxygen consumption causes oxygen demand/supply mismatch, leading to hypoxia. Hence, early targeting of the determinants and regulators of oxygen consumption in CKD may alter the disease course before permanent damage ensues. Here, we focus on hypoxia inducible factor-1α (HIF-1α) and AMP-activated protein kinase (AMPK) and on the mechanisms by which they may facilitate cellular hypoxia adaptation. We found that HIF-1α activation in the subtotal nephrectomy (STN) model of CKD limits protein synthesis, inhibits apoptosis, and activates autophagy, presumably for improved cell survival. AMPK activation was diminished in the STN kidney and was remarkably restored by HIF-1α activation, demonstrating a novel role for HIF-1α in the regulation of AMPK activity. We also investigated the independent and combined effects of HIF-1α and AMPK on cell survival and death pathways by utilizing pharmacological and knockdown approaches in cell culture models. We found that the effect of HIF-1α activation on autophagy is independent of AMPK, but on apoptosis it is partially AMPK dependent. The effects of HIF-1α and AMPK activation on inhibiting protein synthesis via the mTOR pathway appear to be additive. These various effects were also observed under hypoxic conditions. In conclusion, HIF-1α and AMPK appear to be linked at a molecular level and may act as components of a concerted cellular response to hypoxic stress in the pathophysiology of CKD.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adaptación Fisiológica/fisiología , Hipoxia de la Célula/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Insuficiencia Renal Crónica/metabolismo , Animales , Apoptosis/fisiología , Autofagia/fisiología , Modelos Animales de Enfermedad , Masculino , Nefrectomía , Ratas , Ratas Wistar , Circulación Renal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
14.
Am J Physiol Renal Physiol ; 308(12): F1452-62, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25925251

RESUMEN

Ischemia-reperfusion injury (IRI) due to hypotension is a common cause of human acute kidney injury (AKI). Hypoxia-inducible transcription factors (HIFs) orchestrate a protective response in renal endothelial and epithelial cells in AKI models. As human mucin 1 (MUC1) is induced by hypoxia and enhances HIF-1 activity in cultured epithelial cells, we asked whether mouse mucin 1 (Muc1) regulates HIF-1 activity in kidney tissue during IRI. Whereas Muc1 was localized on the apical surface of the thick ascending limb, distal convoluted tubule, and collecting duct in the kidneys of sham-treated mice, Muc1 appeared in the cytoplasm and nucleus of all tubular epithelia during IRI. Muc1 was induced during IRI, and Muc1 transcripts and protein were also present in recovering proximal tubule cells. Kidney damage was worse and recovery was blocked during IRI in Muc1 knockout mice compared with congenic control mice. Muc1 knockout mice had reduced levels of HIF-1α, reduced or aberrant induction of HIF-1 target genes involved in the shift of glucose metabolism to glycolysis, and prolonged activation of AMP-activated protein kinase, indicating metabolic stress. Muc1 clearly plays a significant role in enhancing the HIF protective pathway during ischemic insult and recovery in kidney epithelia, providing a new target for developing therapies to treat AKI. Moreover, our data support a role specifically for HIF-1 in epithelial protection of the kidney during IRI as Muc1 is present only in tubule epithelial cells.


Asunto(s)
Mucina-1/metabolismo , Daño por Reperfusión/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Riñón/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión/fisiopatología
15.
J Biol Chem ; 288(39): 27849-60, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23935101

RESUMEN

The vasopressin type 2 receptor (V2R) is a critical G protein-coupled receptor (GPCR) for vertebrate physiology, including the balance of water and sodium ions. It is unclear how its two native hormones, vasopressin (VP) and oxytocin (OT), both stimulate the same cAMP/PKA pathway yet produce divergent antinatriuretic and antidiuretic effects that are either strong (VP) or weak (OT). Here, we present a new mechanism that differentiates the action of VP and OT on V2R signaling. We found that vasopressin, as opposed to OT, continued to generate cAMP and promote PKA activation for prolonged periods after ligand washout and receptor internalization in endosomes. Contrary to the classical model of arrestin-mediated GPCR desensitization, arrestins bind the VP-V2R complex yet extend rather than shorten the generation of cAMP. Signaling is instead turned off by the endosomal retromer complex. We propose that this mechanism explains how VP sustains water and Na(+) transport in renal collecting duct cells. Together with recent work on the parathyroid hormone receptor, these data support the existence of a novel "noncanonical" regulatory pathway for GPCR activation and response termination, via the sequential action of ß-arrestin and the retromer complex.


Asunto(s)
Arrestinas/metabolismo , Regulación de la Expresión Génica , Receptores de Vasopresinas/metabolismo , Transducción de Señal , Animales , Fármacos Antidiuréticos/farmacología , Acuaporina 2/metabolismo , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Perros , Endosomas/metabolismo , Células HEK293 , Humanos , Riñón/metabolismo , Ligandos , Células de Riñón Canino Madin Darby , Oxitocina/química , Fosforilación , Receptores Acoplados a Proteínas G/metabolismo , Sodio/metabolismo , beta-Arrestinas
16.
Am J Physiol Renal Physiol ; 307(12): F1380-9, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25253241

RESUMEN

Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Albúminas/metabolismo , Endocitosis , Túbulos Renales Proximales/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Reguladoras de la Apoptosis , Células HEK293 , Humanos , Masculino , Ratones Noqueados , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , Interferencia de ARN , Transfección , Proteínas Supresoras de Tumor/genética
18.
Nephrol Dial Transplant ; 29(7): 1312-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24378526

RESUMEN

A goal for scientists studying septic acute kidney injury (AKI) should be to formulate a conceptual model of disease that is able to coherently reconcile the molecular and inflammatory consequences of sepsis with impaired epithelial tubular function, diminished glomerular filtration rate (GFR) and ultimately kidney failure. Recent evidence has shed light on how sepsis modulates the tubular regulation of ion, glucose, urea and water transport and acid-base homeostasis in the kidney. The present review summarizes recent discoveries on changes in epithelial transport under septic and endotoxemic conditions as well as the mechanisms that link inflammation with impaired tubular membrane transport. This paper also proposes that the tubular dysfunction that is mediated by inflammation in sepsis ultimately leads to increased sodium and chloride delivery to the distal tubule and macula densa, contributing to tubuloglomerular feedback and impaired GFR. We feel that this conceptual model resolves many of the physiologic and clinical paradoxes that septic AKI presents to practicing researchers and clinicians.


Asunto(s)
Lesión Renal Aguda/etiología , Cloruros/metabolismo , Células Epiteliales/metabolismo , Sepsis/complicaciones , Lesión Renal Aguda/metabolismo , Animales , Humanos , Transporte Iónico , Sepsis/metabolismo
19.
Semin Dial ; 27(3): 295-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24118090

RESUMEN

Severe hypothermia is defined as a core body temperature <28°C and is associated with in-hospital mortality rates of 50% or higher. Delays in rewarming and slower rates of rewarming are the most important prognostic factors associated with increased mortality. Arrhythmias are the most common cause of mortality in patients with severe accidental hypothermia. Electrolyte abnormalities such as hyperkalemia and hypocalcemia that may worsen when patients are rewarmed contribute to the risk of arrhythmias. Cardiopulmonary bypass (CBP) is considered the treatment of choice for active internal rewarming of patients with severe hypothermia, but it is not always available and is time consuming to initiate. We describe a case where hemodialysis (HD) was used to treat accidental hypothermia in a patient with an initial temperature of 23.5°C. Average rewarming rates of 1.5°C/hour were achieved. The advantages of HD when compared with CBP are that it is (1) more widely and readily available, (2) less invasive, (3) less expensive, and (4) can correct associated acidosis and electrolyte abnormalities commonly seen in patients with severe hypothermia.


Asunto(s)
Hipotermia/terapia , Diálisis Renal/métodos , Recalentamiento/métodos , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
20.
Crit Care ; 18(5): 501, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25575158

RESUMEN

The most common cause of acute kidney injury (AKI) in hospitalized patients is sepsis. However, the molecular pathways and mechanisms that mediate septic AKI are not well defined. Experiments performed over the past 20 years suggest that there are profound differences in the pathogenesis between septic and ischemic AKI. Septic AKI often occurs independently of hypoperfusion, and is mediated by a concomitant pro- and anti-inflammatory state that is activated in response to various pathogen-associated molecular patterns, such as endotoxin, as well as damage-associated molecular patterns. These molecular patterns are recognized by Toll-like receptors (TLRs) found in the kidney, and effectuate downstream inflammatory pathways. Additionally, apoptosis has been proposed to play a role in the pathogenesis of septic AKI. However, targeted therapies designed to mitigate the above aspects of the inflammatory state, TLR-related pathways, and apoptosis have failed to show significant clinical benefit. This failure is likely due to the protean nature of septic AKI, whereby different patients present at different points along the immunologic spectrum. While one patient may benefit from targeted therapy at one end of the spectrum, another patient at the other end may be harmed by the same therapy. We propose that a next important step in septic AKI research will be to identify where patients lie on the immunologic spectrum in order to appropriately target therapies at the inflammatory cascade, TLRs, and possibly apoptosis.


Asunto(s)
Lesión Renal Aguda/etiología , Sepsis/complicaciones , Receptor Toll-Like 4/metabolismo , Lesión Renal Aguda/fisiopatología , Apoptosis , Endotoxinas/fisiología , Humanos , Inflamación , Sepsis/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA