Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Immunol Cell Biol ; 100(6): 424-439, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35507473

RESUMEN

Advances made in chimeric antigen receptor (CAR) T cell therapy have revolutionized the treatment and management of certain cancers. Currently, B cell malignancies have been among the few cancers to which CAR T cells have shown persistent and resilient anti-tumor responses. A growing body of evidence suggests that the persistence of CAR T cells within patients following infusion is linked to the mitochondrial fitness of the CAR T cell, which could affect clinical outcomes. Analysis of CAR T cells from patients undergoing successful treatment has shown an increase in mitochondrial mass and fusion events, and a reduction in aerobic metabolism, highlighting the importance of mitochondria in CAR T cell function. Consequently, there has been recent interest and investment in approaches that focus on mitochondrial programming. In this regard, miRNAs are promising agents in mitochondrial reprogramming for several reasons: (1) natural and artificial miRNAs are non-immunogenic, (2) one miRNA can simultaneously modulate the expression of multiple genes within a pathway, (3) the small size of a sequence required for producing mature miRNA is ideal for use in viral vectors and (4) different precursor miRNAs (pre-miRNAs) hairpins can be incorporated into a polycistronic miRNA cluster to create a miRNA cocktail. In this perspective, we describe the latest genetic engineering strategies that can be used to achieve the optimal expression of candidate miRNAs alongside a CAR construct. In addition, we include an in silico analysis of rational candidate miRNAs that could promote the mitochondrial fitness of CAR T cells.


Asunto(s)
MicroARNs , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva , MicroARNs/genética , MicroARNs/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T
2.
Cancers (Basel) ; 13(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799768

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy has revolutionized adoptive cell therapy with impressive therapeutic outcomes of >80% complete remission (CR) rates in some haematological malignancies. Despite this, CAR T cell therapy for the treatment of solid tumours has invariably been unsuccessful in the clinic. Immunosuppressive factors and metabolic stresses in the tumour microenvironment (TME) result in the dysfunction and exhaustion of CAR T cells. A growing body of evidence demonstrates the importance of the mitochondrial and metabolic state of CAR T cells prior to infusion into patients. The different T cell subtypes utilise distinct metabolic pathways to fulfil their energy demands associated with their function. The reprogramming of CAR T cell metabolism is a viable approach to manufacture CAR T cells with superior antitumour functions and increased longevity, whilst also facilitating their adaptation to the nutrient restricted TME. This review discusses the mitochondrial and metabolic state of T cells, and describes the potential of the latest metabolic interventions to maximise CAR T cell efficacy for solid tumours.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA