Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gut ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821858

RESUMEN

OBJECTIVE: The hallmark oncogene MYC drives the progression of most tumours, but direct inhibition of MYC by a small-molecule drug has not reached clinical testing. MYC is a transcription factor that depends on several binding partners to function. We therefore explored the possibility of targeting MYC via its interactome in pancreatic ductal adenocarcinoma (PDAC). DESIGN: To identify the most suitable targets among all MYC binding partners, we constructed a targeted shRNA library and performed screens in cultured PDAC cells and tumours in mice. RESULTS: Unexpectedly, many MYC binding partners were found to be important for cultured PDAC cells but dispensable in vivo. However, some were also essential for tumours in their natural environment and, among these, the ATPases RUVBL1 and RUVBL2 ranked first. Degradation of RUVBL1 by the auxin-degron system led to the arrest of cultured PDAC cells but not untransformed cells and to complete tumour regression in mice, which was preceded by immune cell infiltration. Mechanistically, RUVBL1 was required for MYC to establish oncogenic and immunoevasive gene expression identifying the RUVBL1/2 complex as a druggable vulnerability in MYC-driven cancer. CONCLUSION: One implication of our study is that PDAC cell dependencies are strongly influenced by the environment, so genetic screens should be performed in vitro and in vivo. Moreover, the auxin-degron system can be applied in a PDAC model, allowing target validation in living mice. Finally, by revealing the nuclear functions of the RUVBL1/2 complex, our study presents a pharmaceutical strategy to render pancreatic cancers potentially susceptible to immunotherapy.

2.
Bioorg Med Chem Lett ; 24(23): 5466-9, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25455485

RESUMEN

Using 2,8-bis(trifluoromethyl)quinoline, the pharmacophore of mefloquine, as scaffold, eleven novel triazole-linked compounds have been synthesised by the application of CuAAC chemistry. The in vitro biological activity of the compounds on the Plasmodium falciparum chloroquine-sensitive strain NF54 was then determined. The compounds all showed IC50s in the lower µM range with (1R,3S,5R)-N-{[1-(2,8-bis(trifluoromethyl)quinoline-4-yl)-1H-1,2,3-triazol-4-yl]methyl}adamantan-2-amine (29) exhibiting the best activity of 1.00 µM.


Asunto(s)
Antimaláricos/farmacología , Malaria/tratamiento farmacológico , Mefloquina/uso terapéutico , Plasmodium falciparum/efectos de los fármacos , Triazoles/química , Humanos , Mefloquina/administración & dosificación , Estructura Molecular , Relación Estructura-Actividad
3.
ACS Chem Biol ; 19(7): 1638-1647, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38934237

RESUMEN

TRIM7 is a ubiquitin E3 ligase with key regulatory functions, mediating viral infection, tumor biology, innate immunity, and cellular processes, such as autophagy and ferroptosis. It contains a PRYSPRY domain that specifically recognizes degron sequences containing C-terminal glutamine. Ligands that bind to the TRIM7 PRYSPRY domain may have applications in the treatment of viral infections, as modulators of inflammation, and in the design of a new class of PROTACs (PROteolysis TArgeting Chimeras) that mediate the selective degradation of therapeutically relevant proteins (POIs). Here, we developed an assay toolbox for the comprehensive evaluation of TRIM7 ligands. Using TRIM7 degron sequences together with a structure-based design, we developed the first series of peptidomimetic ligands with low micromolar affinity. The terminal carboxylate moiety was required for ligand activity but prevented cell penetration. A prodrug strategy using an ethyl ester resulted in enhanced permeability, which was evaluated using confocal imaging.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ligandos , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Peptidomiméticos/química , Peptidomiméticos/farmacología , Proteolisis , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/química , Profármacos/química , Profármacos/farmacología , Degrones
4.
Medchemcomm ; 10(12): 2118-2125, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32206243

RESUMEN

The biosynthesis of the essential metabolic cofactor coenzyme A (CoA) has been receiving increasing attention as a new target that shows potential to counter the rising resistance to established antimicrobials. In particular, phosphopantothenoylcysteine synthetase (PPCS)-the second CoA biosynthesis enzyme that is found as part of the bifunctional CoaBC protein in bacteria, but is monofunctional in eukaryotes-has been validated as a target through extensive genetic knockdown studies in Mycobacterium tuberculosis. Moreover, it has been identified as the molecular target of the fungal natural product CJ-15,801 that shows selective activity against Staphylococcus aureus and the malaria parasite Plasmodium falciparum. As such, CJ-15,801 and 4'-phospho-CJ-15,801 (its metabolically active form) are excellent tool compounds for use in the development of new antimicrobial PPCS inhibitors. Unfortunately, further study and analysis of CJ-15,801 is currently being hampered by several unique challenges posed by its synthesis. In this study we describe how these challenges were overcome by using a robust palladium-catalyzed coupling to form the key N-acyl vinylogous carbamate moiety with retention of stereochemistry, and by extensive investigation of protecting groups suited to the labile functional group combinations contained in this molecule. We also demonstrate that using TBAF for deprotection causes undesired off-target effects related to the presence of residual tertiary ammonium salts. Finally, we provide a new method for the chemoenzymatic preparation of 4'-phospho-CJ-15,801 on multi-milligram scale, after showing that chemical synthesis of the molecule is not practical. Taken together, the results of this study advances our pursuit to discover new antimicrobials that specifically target CoA biosynthesis and/or utilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA