Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(38): 26132-26144, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37740309

RESUMEN

Spatiotemporal control is a critical issue in the design of strategies for the photoregulation of oligonucleotide activity. Efficient uncaging, i.e., activation by removal of photolabile protecting groups (PPGs), often necessitates multiple PPGs. An alternative approach is based on circularization strategies, exemplified by intrasequential circularization, also denoted photo-tethering, as introduced in [Seyfried et al., Angew. Chem., Int. Ed., 2017, 56, 359]. Here, we develop a computational protocol, relying on replica exchange molecular dynamics (REMD), in order to characterize the destabilization of a series of circularized, caged DNA oligonucleotides addressed in the aforementioned study. For these medium-sized (32 nt) oligonucleotides, melting temperatures are computed, whose trend is in good agreement with experiment, exhibiting a large destabilization and, hence, reduction of the melting temperature of the order of ΔTm ∼ 30 K as compared with the native species. The analysis of free energy landscapes confirms the destabilization pattern experienced by the circularized oligonucleotides. The present study underscores that computational protocols that capture controlled destabilization and uncaging of oligonucleotides are promising as predictive tools in the tailored photocontrol of nucleic acids.


Asunto(s)
Simulación de Dinámica Molecular , Oligonucleótidos , ADN , Temperatura , Entropía
2.
Phys Chem Chem Phys ; 24(3): 1795-1802, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985062

RESUMEN

In view of the demand for photoactivatable probes that operate in the visible (VIS) to near infrared (NIR) region of the spectrum, we designed a bichromophoric system based on a rhodamine fluorophore and a BODIPY photocage. Two-photon excited fluorescence (TPEF) measurements and quantum chemical calculations reveal excellent two-photon properties of the employed rhodamine derivative. Excitation of the rhodamine unit via a one- or two-photon process leads to excitation energy transfer (EET) onto the BODIPY part, which is followed by the liberation of the leaving group. Ultrafast transient absorption spectroscopy provides evidence for a highly efficient EET dynamics on a sub-500 femtosecond scale. Complementary quantum dynamical calculations using the multi-layer multiconfiguration time-dependent Hartree (ML-MCTDH) approach highlight the quantum coherent character of the EET transfer. Photorelease of p-nitroaniline (PNA) was investigated by UV/vis absorption spectroscopy by either excitation of the rhodamine or the BODIPY moiety. Even though a quantitative assessment of the PNA yield could not be achieved for this particular BODIPY cage, the present study provides a design principle for a class of photocages that can be broadly activated between 500 and 900 nm.

3.
Chemistry ; 24(49): 13026-13035, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-29889321

RESUMEN

Photolabile protecting groups (PPGs or photocages) are increasingly subject to molecular design to meet requirements such as absorbance in the visible spectral range, high molar absorption coefficients, and high quantum yields of leaving group release. Improvements in these properties for the promising 3-diethylaminobenzyl (DEAMb) photocage, the photoactivity of which is based on the Zimmerman meta effect, are reported. Expansion of the aromatic system with a second aromatic ring resulted in improved spectral properties. A systematic trend relating the electronic (π-donor or acceptor) properties of the new aryl substituent and its position in the DEAMb ring to changes in the spectral properties could be observed. Conclusions from the experimental results were supported by computations obtained by using time-dependent DFT. A second generation of DEAMb-based photocages was designed. A rigid linker was introduced to ensure more efficient conjugation of the aromatic ring π systems by limiting rotational freedom. The resulting fluorenol (9-hydroxyfluorene)-based photocages had superior spectral properties to those of simple biphenyl systems. The best uncaging cross section achieved was 5320 m-1 cm-1 (ϵΦ365 ).

4.
Phys Chem Chem Phys ; 20(18): 12483-12492, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29700539

RESUMEN

We examine the mechanism of ultrafast internal conversion between the B band (Soret band) and the Q band in porphine (H2P), the prototypical free-base porphyrin, using electronic structure studies and on-the-fly surface-hopping nonadiabatic dynamics. Our study highlights the crucial role of dark states within the N band which are found to mediate B/Q state transfer, necessitating a treatment beyond Gouterman's classic four-orbital model. The sequential B → N → Q pathway dominates largely over the direct B → Q pathway which is found to be energetically unfavorable. Potential energy surface cuts and conical intersections between excited states are determined by TDDFT and validated by CASSCF/CASPT2 and XMCQDPT2 calculations. Both the static analysis and on-the-fly surface-hopping calculations suggest a pathway which involves minor structural deformations via in-plane vibrations. The B → N conversion is a barrierless adiabatic process occurring within ∼20 fs, while the subsequent N → Q conversion occurs via a conical intersection within ∼100 fs, in agreement with time-resolved experiments for porphine and related free base porphyrins. Furthermore, evidence for both sequential and direct transfer to the Qx and Qy states is obtained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA