Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Hum Mol Genet ; 28(3): 396-406, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30281092

RESUMEN

Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin protein, leading to progressive muscle weakness and premature death due to respiratory and/or cardiac complications. Cardiac involvement is characterized by progressive dilated cardiomyopathy, decreased fractional shortening and metabolic dysfunction involving reduced metabolism of fatty acids-the major cardiac metabolic substrate. Several mouse models have been developed to study molecular and pathological consequences of dystrophin deficiency, but do not recapitulate all aspects of human disease pathology and exhibit a mild cardiac phenotype. Here we demonstrate that Cmah (cytidine monophosphate-sialic acid hydroxylase)-deficient mdx mice (Cmah-/-;mdx) have an accelerated cardiac phenotype compared to the established mdx model. Cmah-/-;mdx mice display earlier functional deterioration, specifically a reduction in right ventricle (RV) ejection fraction and stroke volume (SV) at 12 weeks of age and decreased left ventricle diastolic volume with subsequent reduced SV compared to mdx mice by 24 weeks. They further show earlier elevation of cardiac damage markers for fibrosis (Ctgf), oxidative damage (Nox4) and haemodynamic load (Nppa). Cardiac metabolic substrate requirement was assessed using hyperpolarized magnetic resonance spectroscopy indicating increased in vivo glycolytic flux in Cmah-/-;mdx mice. Early upregulation of mitochondrial genes (Ucp3 and Cpt1) and downregulation of key glycolytic genes (Pdk1, Pdk4, Ppara), also denote disturbed cardiac metabolism and shift towards glucose utilization in Cmah-/-;mdx mice. Moreover, we show long-term treatment with peptide-conjugated exon skipping antisense oligonucleotides (20-week regimen), resulted in 20% cardiac dystrophin protein restoration and significantly improved RV cardiac function. Therefore, Cmah-/-;mdx mice represent an appropriate model for evaluating cardiac benefit of novel DMD therapeutics.


Asunto(s)
Citidina Monofosfato/genética , Distrofina/deficiencia , Morfolinos/uso terapéutico , Animales , Cardiomiopatía Dilatada/genética , Carnitina O-Palmitoiltransferasa/genética , Factor de Crecimiento del Tejido Conjuntivo/análisis , Citidina Monofosfato/fisiología , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Exones , Terapia Genética/métodos , Corazón/fisiopatología , Masculino , Ratones , Ratones Endogámicos mdx , Oxigenasas de Función Mixta/metabolismo , Distrofia Muscular de Duchenne/genética , Miocardio/metabolismo , NADPH Oxidasa 4/análisis , Oligonucleótidos Antisentido/genética , Péptidos/genética , Fenotipo , Volumen Sistólico , Proteína Desacopladora 3/genética , Función Ventricular Derecha
2.
Gene Ther ; 27(10-11): 505-515, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-32313099

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by loss of the survival motor neuron (SMN) gene. While there are currently two approved gene-based therapies for SMA, availability, high cost, and differences in patient response indicate that alternative treatment options are needed. Optimal therapeutic strategies will likely be a combination of SMN-dependent and -independent treatments aimed at alleviating symptoms in the central nervous system and peripheral muscles. Krüppel-like factor 15 (KLF15) is a transcription factor that regulates key metabolic and ergogenic pathways in muscle. We have recently reported significant downregulation of Klf15 in muscle of presymptomatic SMA mice. Importantly, perinatal upregulation of Klf15 via transgenic and pharmacological methods resulted in improved disease phenotypes in SMA mice, including weight and survival. In the current study, we designed an adeno-associated virus serotype 8 (AAV8) vector to overexpress a codon-optimized Klf15 cDNA under the muscle-specific Spc5-12 promoter (AAV8-Klf15). Administration of AAV8-Klf15 to severe Taiwanese Smn-/-;SMN2 or intermediate Smn2B/- SMA mice significantly increased Klf15 expression in muscle. We also observed significant activity of the AAV8-Klf15 vector in liver and heart. AAV8-mediated Klf15 overexpression moderately improved survival in the Smn2B/- model but not in the Taiwanese mice. An inability to specifically induce Klf15 expression at physiological levels in a time- and tissue-dependent manner may have contributed to this limited efficacy. Thus, our work demonstrates that an AAV8-Spc5-12 vector induces high gene expression as early as P2 in several tissues including muscle, heart, and liver, but highlights the challenges of achieving meaningful vector-mediated transgene expression of Klf15.


Asunto(s)
Dependovirus , Atrofia Muscular Espinal , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Transgénicos , Músculos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Serogrupo , Proteína 1 para la Supervivencia de la Neurona Motora/genética
3.
Proc Natl Acad Sci U S A ; 113(39): 10962-7, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27621445

RESUMEN

The development of antisense oligonucleotide therapy is an important advance in the identification of corrective therapy for neuromuscular diseases, such as spinal muscular atrophy (SMA). Because of difficulties of delivering single-stranded oligonucleotides to the CNS, current approaches have been restricted to using invasive intrathecal single-stranded oligonucleotide delivery. Here, we report an advanced peptide-oligonucleotide, Pip6a-morpholino phosphorodiamidate oligomer (PMO), which demonstrates potent efficacy in both the CNS and peripheral tissues in severe SMA mice following systemic administration. SMA results from reduced levels of the ubiquitously expressed survival motor neuron (SMN) protein because of loss-of-function mutations in the SMN1 gene. Therapeutic splice-switching oligonucleotides (SSOs) modulate exon 7 splicing of the nearly identical SMN2 gene to generate functional SMN protein. Pip6a-PMO yields SMN expression at high efficiency in peripheral and CNS tissues, resulting in profound phenotypic correction at doses an order-of-magnitude lower than required by standard naked SSOs. Survival is dramatically extended from 12 d to a mean of 456 d, with improvement in neuromuscular junction morphology, down-regulation of transcripts related to programmed cell death in the spinal cord, and normalization of circulating insulin-like growth factor 1. The potent systemic efficacy of Pip6a-PMO, targeting both peripheral as well as CNS tissues, demonstrates the high clinical potential of peptide-PMO therapy for SMA.


Asunto(s)
Atrofia Muscular Espinal/tratamiento farmacológico , Oligonucleótidos/uso terapéutico , Péptidos/química , Envejecimiento , Alelos , Secuencia de Aminoácidos , Biomarcadores/sangre , Línea Celular , Humanos , Movimiento , Atrofia Muscular Espinal/sangre , Atrofia Muscular Espinal/patología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo , Oligonucleótidos/administración & dosificación , Oligonucleótidos/farmacología , Fenotipo , Empalme del ARN/genética , Análisis de Supervivencia , Proteína 2 para la Supervivencia de la Neurona Motora/genética
4.
Trends Genet ; 27(5): 196-205, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21497936

RESUMEN

RNA mis-splicing diseases account for up to 15% of all inherited diseases, ranging from neurological to myogenic and metabolic disorders. With greatly increased genomic sequencing being performed for individual patients, the number of known mutations affecting splicing has risen to 50-60% of all disease-causing mutations. During the past 10years, genetic therapy directed toward correction of RNA mis-splicing in disease has progressed from theoretical work in cultured cells to promising clinical trials. In this review, we discuss the use of antisense oligonucleotides to modify splicing as well as the principles and latest work in bifunctional RNA, trans-splicing and modification of U1 and U7 snRNA to target splice sites. The success of clinical trials for modifying splicing to treat Duchenne muscular dystrophy opens the door for the use of splicing modification for most of the mis-splicing diseases.


Asunto(s)
Terapia Genética , Empalme del ARN , Animales , ADN sin Sentido/genética , Exones , Humanos , Mutación , Oligonucleótidos/genética
5.
Nucleic Acids Res ; 39(12): 5284-98, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21345932

RESUMEN

Numerous human genetic diseases are caused by mutations that give rise to aberrant alternative splicing. Recently, several of these debilitating disorders have been shown to be amenable for splice-correcting oligonucleotides (SCOs) that modify splicing patterns and restore the phenotype in experimental models. However, translational approaches are required to transform SCOs into usable drug products. In this study, we present a new cell-penetrating peptide, PepFect14 (PF14), which efficiently delivers SCOs to different cell models including HeLa pLuc705 and mdx mouse myotubes; a cell culture model of Duchenne's muscular dystrophy (DMD). Non-covalent PF14-SCO nanocomplexes induce splice-correction at rates higher than the commercially available lipid-based vector Lipofectamine 2000 (LF2000) and remain active in the presence of serum. Furthermore, we demonstrate the feasibility of incorporating this delivery system into solid formulations that could be suitable for several therapeutic applications. Solid dispersion technique is utilized and the formed solid formulations are as active as the freshly prepared nanocomplexes in solution even when stored at an elevated temperatures for several weeks. In contrast, LF2000 drastically loses activity after being subjected to same procedure. This shows that using PF14 is a very promising translational approach for the delivery of SCOs in different pharmaceutical forms.


Asunto(s)
Péptidos de Penetración Celular/química , Lipopéptidos/química , Oligonucleótidos Antisentido/administración & dosificación , Empalme Alternativo , Animales , Péptidos de Penetración Celular/metabolismo , Péptidos de Penetración Celular/toxicidad , Células Cultivadas , Medios de Cultivo , Medio de Cultivo Libre de Suero , Endocitosis , Células HeLa , Humanos , Cinética , Luz , Lipopéptidos/metabolismo , Lipopéptidos/toxicidad , Ratones , Fibras Musculares Esqueléticas/metabolismo , Nanoestructuras/química , Oligonucleótidos Antisentido/química , Oligonucleótidos Antisentido/metabolismo , Dispersión de Radiación , Soluciones , Temperatura
6.
EMBO Mol Med ; 15(11): e17683, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37724723

RESUMEN

Spinal muscular atrophy (SMA) is a leading genetic cause of infant mortality. The advent of approved treatments for this devastating condition has significantly changed SMA patients' life expectancy and quality of life. Nevertheless, these are not without limitations, and research efforts are underway to develop new approaches for improved and long-lasting benefits for patients. Protein arginine methyltransferases (PRMTs) are emerging as druggable epigenetic targets, with several small-molecule PRMT inhibitors already in clinical trials. From a screen of epigenetic molecules, we have identified MS023, a potent and selective type I PRMT inhibitor able to promote SMN2 exon 7 inclusion in preclinical SMA models. Treatment of SMA mice with MS023 results in amelioration of the disease phenotype, with strong synergistic amplification of the positive effect when delivered in combination with the antisense oligonucleotide nusinersen. Moreover, transcriptomic analysis revealed that MS023 treatment has minimal off-target effects, and the added benefit is mainly due to targeting neuroinflammation. Our study warrants further clinical investigation of PRMT inhibition both as a stand-alone and add-on therapy for SMA.


Asunto(s)
Atrofia Muscular Espinal , Calidad de Vida , Animales , Humanos , Lactante , Ratones , Exones , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleótidos/farmacología , Oligonucleótidos/uso terapéutico , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/uso terapéutico
7.
Methods Mol Biol ; 2383: 491-513, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34766309

RESUMEN

Oligonucleotides (ONs) are therapeutic macromolecules with great potential for the treatment of neurological conditions, including spinal muscular atrophy (SMA), a neurodegenerative disease. However, the neurovascular unit severely limits their distribution to the neural parenchyma of the brain and the spinal cord. Cell-penetrating peptides (CPPs) can be conjugated to oligonucleotides to increase their delivery across biological barriers. In this chapter, we describe the synthesis and conjugation of CPPs to oligonucleotides, and the use of a severe SMA mouse model to test in vivo the efficacy of CPP-delivered oligonucleotides, using ELISA, western blot, and TaqMan™ RT-qPCR assays.


Asunto(s)
Atrofia Muscular Espinal , Animales , Péptidos de Penetración Celular , Modelos Animales de Enfermedad , Ratones , Atrofia Muscular Espinal/tratamiento farmacológico , Oligonucleótidos , Oligonucleótidos Antisentido
8.
JCI Insight ; 7(24)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36346674

RESUMEN

Antisense oligonucleotides (ASOs) have emerged as one of the most innovative new genetic drug modalities. However, their high molecular weight limits their bioavailability for otherwise-treatable neurological disorders. We investigated conjugation of ASOs to an antibody against the murine transferrin receptor, 8D3130, and evaluated it via systemic administration in mouse models of the neurodegenerative disease spinal muscular atrophy (SMA). SMA, like several other neurological and neuromuscular diseases, is treatable with single-stranded ASOs that modulate splicing of the survival motor neuron 2 (SMN2) gene. Administration of 8D3130-ASO conjugate resulted in elevated levels of bioavailability to the brain. Additionally, 8D3130-ASO yielded therapeutic levels of SMN2 splicing in the central nervous system of adult human SMN2-transgenic (hSMN2-transgenic) mice, which resulted in extended survival of a severely affected SMA mouse model. Systemic delivery of nucleic acid therapies with brain-targeting antibodies offers powerful translational potential for future treatments of neuromuscular and neurodegenerative diseases.


Asunto(s)
Atrofia Muscular Espinal , Enfermedades Neurodegenerativas , Ratones , Animales , Humanos , Oligonucleótidos/farmacología , Oligonucleótidos/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Sistema Nervioso Central , Oligonucleótidos Antisentido/uso terapéutico , Ratones Transgénicos , Modelos Animales de Enfermedad
9.
JCI Insight ; 6(13)2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34236053

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by loss of survival motor neuron (SMN) protein. While SMN restoration therapies are beneficial, they are not a cure. We aimed to identify potentially novel treatments to alleviate muscle pathology combining transcriptomics, proteomics, and perturbational data sets. This revealed potential drug candidates for repurposing in SMA. One of the candidates, harmine, was further investigated in cell and animal models, improving multiple disease phenotypes, including lifespan, weight, and key molecular networks in skeletal muscle. Our work highlights the potential of multiple and parallel data-driven approaches for the development of potentially novel treatments for use in combination with SMN restoration therapies.


Asunto(s)
Harmina/farmacología , Músculo Esquelético , Atrofia Muscular Espinal , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Células Cultivadas , Biología Computacional , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos/métodos , Perfilación de la Expresión Génica/métodos , Humanos , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Fármacos Neuromusculares/farmacología , Proteómica/métodos
10.
Mol Ther Nucleic Acids ; 23: 731-742, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33575118

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations in the survival motor neuron 1 (SMN1) gene. All patients have at least one copy of a paralog, SMN2, but a C-to-T transition in this gene results in exon 7 skipping in a majority of transcripts. Approved treatment for SMA involves promoting exon 7 inclusion in the SMN2 transcript or increasing the amount of full-length SMN by gene replacement with a viral vector. Increasing the pool of SMN2 transcripts and increasing their translational efficiency can be used to enhance splice correction. We sought to determine whether the 5' untranslated region (5' UTR) of SMN2 contains a repressive feature that can be targeted to increase SMN levels. We found that antisense oligonucleotides (ASOs) complementary to the 5' end of SMN2 increase SMN mRNA and protein levels and that this effect is due to inhibition of SMN2 mRNA decay. Moreover, use of the 5' UTR ASO in combination with a splice-switching oligonucleotide (SSO) increases SMN levels above those attained with the SSO alone. Our results add to the current understanding of SMN regulation and point toward a new therapeutic target for SMA.

11.
Nucleic Acid Ther ; 31(3): 190-200, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33989066

RESUMEN

A series of 2'-deoxy and novel 2'-O-methyl and 2'-O-(2-methoxyethyl) (2'-MOE) oligonucleotides with internucleotide methanesulfonyl (mesyl, µ) or 1-butanesulfonyl (busyl, ß) phosphoramidate groups has been synthesized for evaluation as potential splice-switching oligonucleotides. Evaluation of their splice-switching activity in spinal muscular atrophy patient-derived fibroblasts revealed no significant difference in splice-switching efficacy between 2'-MOE mesyl oligonucleotide and the corresponding phosphorothioate (nusinersen). Yet, a survival study with model neonatal mice has shown the antisense 2'-MOE mesyl oligonucleotide to be inferior to nusinersen at the highest dose of 40 mg/kg. A reason for their lower activity in vivo as ascertained by cellular uptake study by fluorescent confocal microscopy in HEK293 cell line could possibly be ascribed to compromised endosomal release and/or nuclear uptake of the 2'-OMe or 2'-MOE µ- and ß-oligonucleotides compared to their phosphorothioate analog.


Asunto(s)
Atrofia Muscular Espinal , Oligonucleótidos , Amidas , Animales , Células HEK293 , Humanos , Ratones , Oligonucleótidos/genética , Oligonucleótidos Antisentido/genética , Ácidos Fosfóricos
12.
EMBO Mol Med ; 13(4): e13243, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33821570

RESUMEN

Nucleic acid-based therapeutics that regulate gene expression have been developed towards clinical use at a steady pace for several decades, but in recent years the field has been accelerating. To date, there are 11 marketed products based on antisense oligonucleotides, aptamers and small interfering RNAs, and many others are in the pipeline for both academia and industry. A major technology trigger for this development has been progress in oligonucleotide chemistry to improve the drug properties and reduce cost of goods, but the main hurdle for the application to a wider range of disorders is delivery to target tissues. The adoption of delivery technologies, such as conjugates or nanoparticles, has been a game changer for many therapeutic indications, but many others are still awaiting their eureka moment. Here, we cover the variety of methods developed to deliver nucleic acid-based therapeutics across biological barriers and the model systems used to test them. We discuss important safety considerations and regulatory requirements for synthetic oligonucleotide chemistries and the hurdles for translating laboratory breakthroughs to the clinic. Recent advances in the delivery of nucleic acid-based therapeutics and in the development of model systems, as well as safety considerations and regulatory requirements for synthetic oligonucleotide chemistries are discussed in this review on oligonucleotide-based therapeutics.


Asunto(s)
Nanopartículas , Oligonucleótidos , Expresión Génica , Oligonucleótidos Antisentido , ARN Interferente Pequeño
13.
Biochem Biophys Res Commun ; 391(1): 517-22, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19961830

RESUMEN

Proximal spinal muscular atrophy (SMA) results from loss of the survival motor neuron 1 (SMN1) gene, with retention of its nearly identical homolog, SMN2. There is a direct correlation between disease severity and SMN2 copy number. Mice do not have a Smn2 gene, and thus cannot naturally replicate the disorder. However, two murine models of SMA have been generated using SMN2-BAC transgenic mice bred onto a mutant Smn background. In these instances mice die shortly after birth, have variable phenotypes within the same litter, or completely correct the SMA phenotype. Both models have been imported to The Jackson Laboratory for distribution to the research community. To ensure that similar results are obtained after importation to The Jackson Laboratory to what was originally reported in the literature, we have begun a molecular and phenotypic evaluation of these mouse models. Here we report our findings for the SMA mouse model that has been deposited by the Li group from Taiwan. These mice, JAX stock number TJL-005058, are homozygous for the SMN2 transgene, Tg(SMN2)2Hung, and a targeted Smn allele that lacks exon 7, Smn1(tm1Hung). Our findings are consistent with those reported originally for this line and clarify some of the original data. In addition, we have cloned and mapped the integration site for Tg(SMN2)2Hung to Chromosome 4, and provide a simple genotyping assay that is specific to the junction fragment. Finally, based upon the survival data from our genetic crosses, we suggest that this underused SMA model may be a useful compliment or alternative to the more commonly used "delta7" SMA mouse. We provide breeding schemes in which two genotypes of mice can be generated so that 50% of the litter will be SMA-like pups while 50% will be controls.


Asunto(s)
Modelos Animales de Enfermedad , Ratones , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Secuencia de Bases , Heterocigoto , Humanos , Ratones Noqueados , Ratones Mutantes Neurológicos , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación , Fenotipo , Proteína 2 para la Supervivencia de la Neurona Motora/genética
14.
Methods Mol Biol ; 2036: 221-236, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31410800

RESUMEN

Antisense oligonucleotides (ASOs) are a widely used form of gene therapy, which is translatable to multiple disorders. A major obstacle for ASO efficacy is its bioavailability for in vivo and in vitro studies. To overcome this challenge we use cell-penetrating peptides (CPPs) for systemic delivery of ASOs. One of the most advanced clinical uses of ASOs is for the treatment of spinal muscular atrophy (SMA). In this chapter, we describe the techniques used for in vitro screening and analysing in vivo biodistribution of CPP-conjugated ASOs targeting the survival motor neuron 2, SMN2, the dose-dependent modifying gene for SMA.


Asunto(s)
Péptidos de Penetración Celular/química , Técnicas de Transferencia de Gen , Atrofia Muscular Espinal/genética , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Administración Intravenosa , Línea Celular , Sistemas de Liberación de Medicamentos , Fibroblastos/metabolismo , Humanos , Inmunohistoquímica , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/terapia , Oligonucleótidos Antisentido/química , Empalme del ARN
15.
EBioMedicine ; 31: 226-242, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29735415

RESUMEN

The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn-/-;SMN2 and Smn2B/- mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation) interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling.


Asunto(s)
Aminoácidos de Cadena Ramificada/farmacología , Proteínas de Unión al ADN , Suplementos Dietéticos , Atrofia Muscular Espinal , Prednisolona/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Transcripción , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción de Tipo Kruppel , Ratones , Ratones Noqueados , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Nucleic Acid Ther ; 27(3): 130-143, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28118087

RESUMEN

Splice-switching antisense oligonucleotides are emerging treatments for neuromuscular diseases, with several splice-switching oligonucleotides (SSOs) currently undergoing clinical trials such as for Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). However, the development of systemically delivered antisense therapeutics has been hampered by poor tissue penetration and cellular uptake, including crossing of the blood-brain barrier (BBB) to reach targets in the central nervous system (CNS). For SMA application, we have investigated the ability of various BBB-crossing peptides for CNS delivery of a splice-switching phosphorodiamidate morpholino oligonucleotide (PMO) targeting survival motor neuron 2 (SMN2) exon 7 inclusion. We identified a branched derivative of the well-known ApoE (141-150) peptide, which as a PMO conjugate was capable of exon inclusion in the CNS following systemic administration, leading to an increase in the level of full-length SMN2 transcript. Treatment of newborn SMA mice with this peptide-PMO (P-PMO) conjugate resulted in a significant increase in the average lifespan and gains in weight, muscle strength, and righting reflexes. Systemic treatment of adult SMA mice with this newly identified P-PMO also resulted in small but significant increases in the levels of SMN2 pre-messenger RNA (mRNA) exon inclusion in the CNS and peripheral tissues. This work provides proof of principle for the ability to select new peptide paradigms to enhance CNS delivery and activity of a PMO SSO through use of a peptide-based delivery platform for the treatment of SMA potentially extending to other neuromuscular and neurodegenerative diseases.


Asunto(s)
Apolipoproteínas E/farmacocinética , Morfolinos/farmacología , Morfolinos/farmacocinética , Atrofia Muscular Espinal/tratamiento farmacológico , Péptidos/farmacocinética , Animales , Animales Recién Nacidos , Apolipoproteínas E/síntesis química , Apolipoproteínas E/química , Biomarcadores/sangre , Barrera Hematoencefálica/química , Barrera Hematoencefálica/metabolismo , Encéfalo/citología , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Exones , Fibroblastos/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Riñón/química , Ratones , Morfolinos/química , Morfolinos/uso terapéutico , Nanoconjugados/análisis , Nanoconjugados/química , Nanoconjugados/uso terapéutico , Péptidos/síntesis química , Péptidos/química , Fenotipo , Músculo Cuádriceps/química , Proteína 2 para la Supervivencia de la Neurona Motora/efectos de los fármacos
17.
Exp Hematol ; 33(6): 624-31, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15911086

RESUMEN

OBJECTIVE: The KCl cotransporter (KCC) plays an important role in cellular cation and volume regulation and contributes to the process of volume reduction that accompanies reticulocyte maturation. In human red cells containing sickle hemoglobin, KCl cotransporter activity is high compared to normal cells, and contributes to the deleterious dehydration of sickle reticulocytes. To date, genes for four KCC isoforms have been identified. As a step toward determining which isoform(s) is responsible for the Cl-dependent K fluxes in reticulocytes, human erythroid cells were examined for the presence of various KCC isoform transcripts. METHODS: In vitro differentiated erythroid precursors, and reticulocytes isolated from normal individuals and sickle patients, were examined by reverse-transcriptase PCR for the expression of KCC isoforms. Transient transfection experiments were subsequently performed to characterize a novel KCC1 promoter. RESULTS: Expression of multiple isoforms was detected, with transcripts for KCC1, 3, and 4 detected in all samples of erythroid cells. Two N-terminal splicing variants were detected for both KCC1 and 3. Sickle hemoglobin containing reticulocytes demonstrated KCC isoform expression patterns similar to wild-type cells, except for a consistent difference in the relative abundance of one KCC1 splice variant. This N-terminal variant initiates from a newly described promoter in the KCC1 gene. CONCLUSION: Three KCC genes are expressed in human red cells. Splicing variants arising from the KCC1 and 3 genes are also evident. Structure/function studies of mouse KCC1 suggest that these natural variants could profoundly affect overall cotransporter activity in the red cell.


Asunto(s)
Anemia de Células Falciformes/patología , Eritrocitos/metabolismo , Isoformas de Proteínas/metabolismo , Simportadores/metabolismo , Anemia de Células Falciformes/inmunología , Células Cultivadas , Humanos , Isoformas de Proteínas/genética , Empalme del ARN , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Simportadores/genética , Cotransportadores de K Cl
18.
Eur J Hum Genet ; 24(2): 271-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25990798

RESUMEN

Allele-specific gene therapy aims to silence expression of mutant alleles through targeting of disease-linked single-nucleotide polymorphisms (SNPs). However, SNP linkage to disease varies between populations, making such molecular therapies applicable only to a subset of patients. Moreover, not all SNPs have the molecular features necessary for potent gene silencing. Here we provide knowledge to allow the maximisation of patient coverage by building a comprehensive understanding of SNPs ranked according to their predicted suitability toward allele-specific silencing in 14 repeat expansion diseases: amyotrophic lateral sclerosis and frontotemporal dementia, dentatorubral-pallidoluysian atrophy, myotonic dystrophy 1, myotonic dystrophy 2, Huntington's disease and several spinocerebellar ataxias. Our systematic analysis of DNA sequence variation shows that most annotated SNPs are not suitable for potent allele-specific silencing across populations because of suboptimal sequence features and low variability (>97% in HD). We suggest maximising patient coverage by selecting SNPs with high heterozygosity across populations, and preferentially targeting SNPs that lead to purine:purine mismatches in wild-type alleles to obtain potent allele-specific silencing. We therefore provide fundamental knowledge on strategies for optimising patient coverage of therapeutics for microsatellite expansion disorders by linking analysis of population genetic variation to the selection of molecular targets.


Asunto(s)
Expansión de las Repeticiones de ADN/genética , Enfermedades Genéticas Congénitas/genética , Terapia Genética , Terapia Molecular Dirigida , Alelos , Silenciador del Gen , Enfermedades Genéticas Congénitas/terapia , Genética de Población , Heterocigoto , Humanos , Polimorfismo de Nucleótido Simple/genética
19.
Leuk Res ; 29(1): 89-97, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15541480

RESUMEN

Ectopic expression of LMO2 occurs in approximately 45% of T-lineage acute lymphoblastic leukemias (T-ALL), sometimes in association with chromosomal translocations. Recently, a lymphoproliferative disorder developed in two participants in a gene therapy trial due to LMO2 activation via integration of the retroviral vector. To investigate these regulatory disruptions, we analyzed the promoter region and identified a tissue-specific repressor. The fragment containing this element could also produce tissue-specific suppression of transcription from the SV40 promoter. This suppression involves histone acetylation which can be relieved with Trichostatin A (TSA). The negative element is in a region consistently removed from LMO2 in the known chromosomal translocations.


Asunto(s)
Proteínas de Unión al ADN/genética , Leucemia/genética , Metaloproteínas/genética , Proto-Oncogenes , Secuencias Reguladoras de Ácidos Nucleicos , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Bases , Secuencia de Consenso , Histona Desacetilasas/fisiología , Humanos , Ácidos Hidroxámicos/farmacología , Células Jurkat , Células K562 , Proteínas con Dominio LIM , Datos de Secuencia Molecular , Especificidad de Órganos , Proteínas Proto-Oncogénicas , Transfección
20.
Nucleic Acid Ther ; 25(2): 65-77, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25594433

RESUMEN

Oligonucleotide analogs have provided novel therapeutics targeting various disorders. However, their poor cellular uptake remains a major obstacle for their clinical development. Negatively charged oligonucleotides, such as 2'-O-Methyl RNA and locked nucleic acids have in recent years been delivered successfully into cells through complex formation with cationic polymers, peptides, liposomes, or similar nanoparticle delivery systems. However, due to the lack of electrostatic interactions, this promising delivery method has been unsuccessful to date using charge-neutral oligonucleotide analogs. We show here that lipid-functionalized cell-penetrating peptides can be efficiently exploited for cellular transfection of the charge-neutral oligonucleotide analog phosphorodiamidate morpholino. The lipopeptides form complexes with splice-switching phosphorodiamidate morpholino oligonucleotide and can be delivered into clinically relevant cell lines that are otherwise difficult to transfect while retaining biological activity. To our knowledge, this is the first study to show delivery through complex formation of biologically active charge-neutral oligonucleotides by cationic peptides.


Asunto(s)
Agammaglobulinemia/tratamiento farmacológico , Enfermedades Genéticas Ligadas al Cromosoma X/tratamiento farmacológico , Morfolinos/administración & dosificación , Atrofia Muscular Espinal/tratamiento farmacológico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Nanopartículas , Péptidos/administración & dosificación , Secuencia de Aminoácidos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Datos de Secuencia Molecular , Morfolinos/uso terapéutico , Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA