Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Carbohydr Polym ; 194: 274-284, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29801840

RESUMEN

The work focus to enhance the properties of xanthan gum (XG) by anchoring metal ions (Fe, Zr) and encapsulating inorganic matrix (M@XG-ZA). The fabricated nanocomposite was characterized by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), surface area (BET) and zeta potential analysis. The adsorption of Sc, Nd, Tm and Yb was investigated after screening of synthesized materials in detail to understand the influence of pH, contact time, temperature and initial REE (rare earth element) concentration both in single and multicomponent system via batch adsorption. The adsorption mechanism was verified by FTIR, SEM and elemental mapping. The SEM images of Zr@XG-ZA demonstrate scutes structure, which disappeared after adsorption of REEs. The maximum adsorption capacities were 132.30, 14.01, 18.15 and 25.73 mg/g for Sc, Nd, Tm and Yb, respectively. The adsorption efficiency over Zr@XG-ZA in multicomponent system was higher than single system and the REEs followed the order: Sc > Yb > Tm > Nd. The Zr@XG-ZA demonstrate good adsorption behavior for REEs up to five cycles and then it can be used as photocatalyst for the degradation of tetracycline. Thus, the work adds a new insight to design and preparation of efficient bifunctional adsorbents from sustainable materials for water purification.

2.
J Hazard Mater ; 294: 128-36, 2015 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-25867585

RESUMEN

A novel magnetic heterogeneous catalyst has been developed by incorporation of iron(II) and magnetic functionalized nanoparticles Fe3O4 in alginate beads with the aim of using them in the advanced Fenton oxidation of a malodorous compound (3 methyl-indole: 3-MI). The effects of significant operational parameters such as initial pH, oxidant concentration and catalyst amount were investigated and optimized for a better removal of 3-MI at initial concentration of 20mgL(-1). Besides, the catalyst stability was evaluated according to the iron leached into the aqueous solution. Results revealed that the parameters affecting Fenton catalysis must be carefully chosen to avoid excessive iron release. Under optimized conditions, the magnetic catalyst exhibited a good catalytic performance. Total removal of 3 methyl indole and a remarkable organic mineralization, without significant leaching of iron, were attained within 120min at pH 3.0 by using 0.4gL(-1) of Fe-MABs and 9.8mmolL(-1) of H2O2. The novel magnetic catalyst would be of potential application due to its high efficiency, easy recovery and good structural stability.


Asunto(s)
Alginatos/química , Peróxido de Hidrógeno/química , Nanopartículas de Magnetita/química , Escatol/química , Contaminantes Químicos del Agua/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Fenómenos Magnéticos , Soluciones , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA