RESUMEN
Within the vaginal ecosystem, lactobacilli and Gardnerella spp. likely interact and influence each other's growth, yet the details of this interaction are not clearly defined. Using medium simulating vaginal fluid and a two-chamber co-culturing system to prevent cell-to-cell contact between the bacteria, we examined the possibility that Lactobacillus jensenii 62B (Lj 62B) and/or G. piotii (Gp) JCP8151B produce extracellular factors through which they influence each other's viability. By 24 h post-inoculation (hpi) in the co-culture system and under conditions similar to the vaginal environment - pH 5.0, 37 °C, and 5% CO2, Lj 62B viability was not affected but Gp JCP8151B had been eliminated. Cell-free supernatant harvested from Lj 62B cultures (Lj-CFS) at 20 hpi, but not 16 hpi, also eliminated Gp JCP8151B growth. Neither lactic acid nor H2O2 production by Lj 62B was responsible for this effect. The Lj-CFS did not affect viability of three species of lactobacilli or eight species of Gram-positive and Gram-negative uropathogens but eliminated viability of eight different strains of Gardnerella spp. Activity of the inhibitory factor within Lj-CFS was abolished by protease treatment and reduced by heat treatment suggesting it is most likely a bacteriocin-like protein; fractionation revealed that the factor has a molecular weight within the 10-30 kDa range. These results suggest that, in medium mimicking vaginal fluid and growth conditions similar to the vaginal environment, Lj 62B produces a potential bacteriocin-like inhibitory substance (Lj-BLIS) that clearly targets Gardnerella spp. strains. Once fully characterized, Lj-BLIS may be a potential treatment for Gardnerella-related BV that does not alter the vaginal microflora.
Asunto(s)
Bacteriocinas , Femenino , Humanos , Bacteriocinas/farmacología , Bacteriocinas/metabolismo , Gardnerella/metabolismo , Peróxido de Hidrógeno/metabolismo , Ecosistema , Vagina/metabolismo , Vagina/microbiología , Gardnerella vaginalisRESUMEN
BACKGROUND: Glycogen metabolism by Lactobacillus spp. that dominate the healthy vaginal microbiome contributes to a low vaginal pH (3.5-4.5). During bacterial vaginosis (BV), strict and facultative anaerobes including Gardnerella vaginalis become predominant, leading to an increase in the vaginal pH (> 4.5). BV enhances the risk of obstetrical complications, acquisition of sexually transmitted infections, and cervical cancer. Factors critical for the maintenance of the healthy vaginal microbiome or the transition to the BV microbiome are not well defined. Vaginal pH may affect glycogen metabolism by the vaginal microflora, thus influencing the shift in the vaginal microbiome. RESULTS: The medium simulating vaginal fluid (MSVF) supported growth of L. jensenii 62G, L. gasseri 63 AM, and L. crispatus JV-V01, and G. vaginalis JCP8151A at specific initial pH conditions for 30 d. L. jensenii at all three starting pH levels (pH 4.0, 4.5, and 5.0), G. vaginalis at pH 4.5 and 5.0, and L. gasseri at pH 5.0 exhibited the long-term stationary phase when grown in MSVF. L. gasseri at pH 4.5 and L. crispatus at pH 5.0 displayed an extended lag phase over 30 d suggesting inefficient glycogen metabolism. Glycogen was essential for the growth of L. jensenii, L. crispatus, and G. vaginalis; only L. gasseri was able to survive in MSVF without glycogen, and only at pH 5.0, where it used glucose. All four species were able to survive for 15 d in MSVF with half the glycogen content but only at specific starting pH levels - pH 4.5 and 5.0 for L. jensenii, L. gasseri, and G. vaginalis and pH 5.0 for L. crispatus. CONCLUSIONS: These results suggest that variations in the vaginal pH critically influence the colonization of the vaginal tract by lactobacilli and G. vaginalis JCP8151A by affecting their ability to metabolize glycogen. Further, we found that L. jensenii 62G is capable of glycogen metabolism over a broader pH range (4.0-5.0) while L. crispatus JV-V01 glycogen utilization is pH sensitive (only functional at pH 5.0). Finally, our results showed that G. vaginalis JCP8151A can colonize the vaginal tract for an extended period as long as the pH remains at 4.5 or above.
Asunto(s)
Gardnerella vaginalis , Vaginosis Bacteriana , Femenino , Humanos , Lactobacillus , Glucógeno/metabolismo , Vagina/microbiología , Vaginosis Bacteriana/microbiología , Concentración de Iones de HidrógenoRESUMEN
Pseudomonas aeruginosa is an opportunistic pathogen that uses malonate among its many carbon sources. We recently reported that, when grown in blood from trauma patients, P. aeruginosa expression of malonate utilization genes was upregulated. In this study, we explored the role of malonate utilization and its contribution to P. aeruginosa virulence. We grew P. aeruginosa strain PA14 in M9 minimal medium containing malonate (MM9) or glycerol (GM9) as a sole carbon source and assessed the effect of the growth on quorum sensing, virulence factors, and antibiotic resistance. Growth of PA14 in MM9, compared to GM9, reduced the production of elastases, rhamnolipids, and pyoverdine; enhanced the production of pyocyanin and catalase; and increased its sensitivity to norfloxacin. Growth in MM9 decreased extracellular levels of N-acylhomoserine lactone autoinducers, an effect likely associated with increased pH of the culture medium; but had little effect on extracellular levels of PQS. At 18 hr of growth in MM9, PA14 formed biofilm-like structures or aggregates that were associated with biomineralization, which was related to increased pH of the culture medium. These results suggest that malonate significantly impacts P. aeruginosa pathogenesis by influencing the quorum sensing systems, the production of virulence factors, biofilm formation, and antibiotic resistance.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana/fisiología , Malonatos/metabolismo , Pseudomonas aeruginosa/patogenicidad , Percepción de Quorum/fisiología , Antibacterianos/farmacología , Biomineralización/fisiología , Catalasa/biosíntesis , Decanoatos , Disacáridos/biosíntesis , Glicerol/metabolismo , Norfloxacino/farmacología , Oligopéptidos/biosíntesis , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Piocianina/biosíntesis , Serina Endopeptidasas/biosíntesis , Virulencia , Factores de Virulencia/metabolismoRESUMEN
Topical antimicrobials that reduce the bacterial bioburden within a chronically-infected wound may have helpful or harmful effects on the healing process. We used murine models of full-thickness skin wounds to determine the effects of the novel biofilm-dispersing wound gel (BDWG) and its gel base on the healing of uninfected wounds. The rate of wound closure over 19 days was comparable among the BDWG-treated (BT) wounds and the controls. Compared with the controls, histology of the BT wounds showed formation of a stable blood clot at day 1, more neovascularisation and reepithelialisation at day 3, and more organised healing at day 7. Fluorescence-activated cell sorting analysis showed a lower percentage of neutrophils in wounded tissues of the BT group at days 1 and 3, and significantly more M2 macrophages at day 3. Levels of proinflammatory cytokines and chemokines were increased over the uninjured baseline within the wounds of all treatment groups but the levels were significantly lower in the BT group at day 1, modulating the inflammatory response. Our results suggest that BDWG does not interfere with the wound healing process and may enhance it by lowering inflammation and allowing transition to the proliferative stage of wound healing by day 3.
Asunto(s)
Antiinfecciosos Locales , Infección de Heridas , Animales , Antiinfecciosos Locales/farmacología , Biopelículas , Geles , Ratones , Piel/lesiones , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológicoRESUMEN
Pseudomonas aeruginosa, a gram-negative opportunistic pathogen, is one of the major species isolated from infected chronic wounds. The multidrug resistance exhibited by P. aeruginosa and its ability to form biofilms that are difficult to eradicate, along with the rising cost of producing new antibiotics, has necessitated the search for alternatives to standard antibiotics. Pyocins are antimicrobial compounds produced by P. aeruginosa that protect themselves from their competitors. We synthesized and purified recombinant P. aeruginosa R2 pyocin and used it in an aqueous solution (rR2P) or formulated in polyethylene glycol (rR2PC) to treat P. aeruginosa-infected wounds. Clinical strains of P. aeruginosa were found to be sensitive (completely), partially sensitive, or resistant to rR2P. In the in vitro biofilm model, rR2P inhibited biofilm development by rR2P-sensitive isolates, while rR2PC eliminated partial biofilms formed by these strains in an in vitro wound biofilm model. In the murine model of excision wounds, and at 24 h post-infection, rR2PC application significantly reduced the bioburden of the clinical isolate BPI86. Application of rR2PC containing two glycoside hydrolase antibiofilm agents eliminated BPI86 from infected wounds. These results suggest that the topical application of rR2PC is an effective therapy for treating wounds infected with R2P-senstive P. aeruginosa strains.
Asunto(s)
Infecciones por Pseudomonas , Infección de Heridas , Animales , Biopelículas , Ratones , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa , Piocinas , Infección de Heridas/tratamiento farmacológicoRESUMEN
Hereditary hemochromatosis (HH), an iron-overload disease, is a prevalent genetic disorder. As excess iron causes a multitude of metabolic disturbances, we postulated that iron overload in HH disrupts colonic homeostasis and colon-microbiome interaction and exacerbates the development and progression of colonic inflammation and colon cancer. To test this hypothesis, we examined the progression and severity of colitis and colon cancer in a mouse model of HH (Hfe-/-), and evaluated the potential contributing factors. We found that experimentally induced colitis and colon cancer progressed more robustly in Hfe-/- mice than in wild-type mice. The underlying causes were multifactorial. Hfe-/- colons were leakier with lower proliferation capacity of crypt cells, which impaired wound healing and amplified inflammation-driven tissue injury. The host/microflora axis was also disrupted. Sequencing of fecal 16S RNA revealed profound changes in the colonic microbiome in Hfe-/- mice in favor of the pathogenic bacteria belonging to phyla Proteobacteria and TM7. There was an increased number of bacteria adhered onto the mucosal surface of the colonic epithelium in Hfe-/- mice than in wild-type mice. Furthermore, the expression of innate antimicrobial peptides, the first-line of defense against bacteria, was lower in Hfe-/- mouse colon than in wild-type mouse colon; the release of pro-inflammatory cytokines upon inflammatory stimuli was also greater in Hfe-/- mouse colon than in wild-type mouse colon. These data provide evidence that excess iron accumulation in colonic tissue as happens in HH promotes colitis and colon cancer, accompanied with bacterial dysbiosis and loss of function of the intestinal/colonic barrier.
Asunto(s)
Colitis , Neoplasias del Colon , Disbiosis , Microbioma Gastrointestinal , Hemocromatosis , Proteobacteria/crecimiento & desarrollo , Animales , Colitis/genética , Colitis/metabolismo , Colitis/microbiología , Colitis/patología , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/microbiología , Neoplasias del Colon/patología , Disbiosis/genética , Disbiosis/metabolismo , Disbiosis/microbiología , Disbiosis/patología , Hemocromatosis/genética , Hemocromatosis/metabolismo , Hemocromatosis/microbiología , Hemocromatosis/patología , Proteína de la Hemocromatosis/deficiencia , Proteína de la Hemocromatosis/metabolismo , Ratones , Ratones Noqueados , Proteobacteria/clasificaciónRESUMEN
INTRODUCTION: Sepsis is a leading cause of mortality in burn patients. One of the major causes of sepsis in burn patients is Pseudomonas aeruginosa. We hypothesized that during dissemination from infected burn wounds and subsequent sepsis, P. aeruginosa affects the metabolome of the blood resulting in changes to specific metabolites that would serve as biomarkers for early diagnosis of sepsis caused by P. aeruginosa. OBJECTIVES: To identify specific biomarkers in the blood after sepsis caused by P. aeruginosa infection of burns. METHODS: Gas chromatography with time-of-flight mass spectrometry was used to compare the serum metabolome of mice that were thermally injured and infected with P. aeruginosa (B-I) to that of mice that were neither injured nor infected, mice that were injured but not infected, and mice that were infected but not injured. RESULTS: Serum levels of 19 metabolites were significantly increased in the B-I group compared to controls while levels of eight metabolites were significantly decreased. Thymidine, thymine, uridine, and uracil (related to pyrimidine metabolism), malate and succinate (a possible sign of imbalance in the tricarboxylic acid cycle), 5-oxoproline (related to glutamine and glutathione metabolism), and trans-4-hydroxyproline (a major component of the protein collagen) were increased. Products of amino acid metabolism were significantly decreased in the B-I group, including methionine, tyrosine, indole-3-acetate, and indole-3-propionate. CONCLUSION: In all, 26 metabolites were identified, including a unique combination of five metabolites (trans-4-hydroxyproline, 5-oxoproline, glycerol-3-galactoside, indole-3-acetate, and indole-3-propionate) that could serve as a set of biomarkers for early diagnosis of sepsis caused by P. aeruginosa in burn patients.
Asunto(s)
Quemaduras/metabolismo , Pseudomonas aeruginosa/metabolismo , Sepsis/metabolismo , Infección de Heridas/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Quemaduras/sangre , Quemaduras/microbiología , Cromatografía de Gases , Modelos Animales de Enfermedad , Femenino , Espectrometría de Masas , Metabolómica , Ratones , Sepsis/sangre , Sepsis/microbiología , Infección de Heridas/sangre , Infección de Heridas/microbiologíaRESUMEN
The opportunistic pathogen Pseudomonas aeruginosa is a major cause of sepsis in severely burned patients. If it is not eradicated from the wound, it translocates to the bloodstream, causing sepsis, multiorgan failure, and death. We recently described the P. aeruginosa heparinase-encoding gene, hepP, whose expression was significantly enhanced when P. aeruginosa strain UCBPP_PA14 (PA14) was grown in whole blood from severely burned patients. Further analysis demonstrated that hepP contributed to the in vivo virulence of PA14 in the Caenorhabditis elegans model. In this study, we utilized the murine model of thermal injury to examine the contribution of hepP to the pathogenesis of P. aeruginosa during burn wound infection. Mutation of hepP reduced the rate of mortality from 100% for mice infected with PA14 to 7% for mice infected with PA14::hepP While comparable numbers of PA14 and PA14::hepP bacteria were recovered from infected skin, only PA14 was recovered from the livers and spleens of infected mice. Despite its inability to spread systemically, PA14::hepP formed perivascular cuffs around the blood vessels within the skin of the thermally injured/infected mice. Intraperitoneal inoculation of the thermally injured mice, bypassing the need for translocation, produced similar results. The rate of mortality for mice infected with PA14::hepP was 0%, whereas it was 66% for mice infected with PA14. As before, only PA14 was recovered from the livers and spleens of infected mice. These results suggest that hepP plays a crucial role in the pathogenesis of PA14 during burn wound infection, most likely by contributing to PA14 survival in the bloodstream of the thermally injured mouse during sepsis.
Asunto(s)
Proteínas Bacterianas/genética , Quemaduras/microbiología , Liasa de Heparina/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Virulencia/genética , Infección de Heridas/microbiología , Animales , Femenino , Ratones , Mutación/genética , Sepsis/microbiología , Piel/microbiologíaRESUMEN
Growth inhibition of the pathogen Staphylococcus aureus with currently available antibiotics is problematic in part due to bacterial biofilm protection. Although recently characterized natural products, including 3',4',5-trihydroxy-6,7-dimethoxy-flavone [1], 3',4',5,6,7-pentahydroxy-flavone [2], and 5-hydroxy-4',7-dimethoxy-flavone [3], exhibit both antibiotic and biofilm inhibitory activities, the mode of action of such hydroxylated flavonoids with respect to S. aureus inhibition is yet to be characterized. Enzymatic digestion and high-resolution MS analysis of differentially expressed proteins from S. aureus with and without exposure to antibiotic flavonoids (1-3) allowed for the characterization of global protein alterations induced by metabolite treatment. A total of 56, 92, and 110 proteins were differentially expressed with bacterial exposure to 1, 2, or 3, respectively. The connectivity of the identified proteins was characterized using a search tool for the retrieval of interacting genes/proteins (STRING) with multitargeted S. aureus inhibition of energy metabolism and biosynthesis by the assayed flavonoids. Identifying the mode of action of natural products as antibacterial agents is expected to provide insight into the potential use of flavonoids alone or in combination with known therapeutic agents to effectively control S. aureus infection.
Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Flavonoides/farmacología , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus/efectos de los fármacos , Apigenina/farmacología , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Cromatografía Liquida , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Flavonas/farmacología , Luteolina/farmacología , Anotación de Secuencia Molecular , Proteómica/métodos , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Espectrometría de Masas en TándemRESUMEN
BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen that causes serious infections in immunocompromised hosts including severely burned patients. In burn patients, P. aeruginosa infection often leads to septic shock and death. Despite numerous studies, the influence of severe thermal injuries on the pathogenesis of P. aeruginosa during systemic infection is not known. Through RNA-seq analysis, we recently showed that the growth of P. aeruginosa strain UCBPP-PA14 (PA14) in whole blood obtained from severely burned patients significantly altered the expression of the PA14 transcriptome when compared with its growth in blood from healthy volunteers. The expression of PA14_23430 and the adjacent gene, PA14_23420, was enhanced by seven- to eightfold under these conditions. RESULTS: Quantitative real-time PCR analysis confirmed the enhancement of expression of both PA14_23420 and PA14_23430 by growth of PA14 in blood from severely burned patients. Computer analysis revealed that PA14_23430 (hepP) encodes a potential heparinase while PA14_23420 (zbdP) codes for a putative zinc-binding dehydrogenase. This analysis further suggested that the two genes form an operon with zbdP first. Presence of the operon was confirmed by RT-PCR experiments. We characterized hepP and its protein product HepP. hepP was cloned from PA14 by PCR and overexpressed in E. coli. The recombinant protein (rHepP) was purified using nickel column chromatography. Heparinase assays using commercially available heparinase as a positive control, revealed that rHepP exhibits heparinase activity. Mutation of hepP resulted in delay of pellicle formation at the air-liquid interface by PA14 under static growth conditions. Biofilm formation by PA14ΔhepP was also significantly reduced. In the Caenorhabditis elegans model of slow killing, mutation of hepP resulted in a significantly lower rate of killing than that of the parent strain PA14. CONCLUSIONS: Changes within the blood of severely burned patients significantly induced expression of hepP in PA14. The heparinase encoded by hepP is a potential virulence factor for PA14 as HepP influences pellicle formation as well as biofilm development by PA14 and the protein is required for full virulence in the C. elegans model of slow killing.
Asunto(s)
Proteínas Bacterianas/genética , Regulación Enzimológica de la Expresión Génica , Liasa de Heparina/genética , Liasa de Heparina/metabolismo , Infecciones por Pseudomonas/enzimología , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Quemaduras/sangre , Quemaduras/inmunología , Quemaduras/microbiología , Caenorhabditis elegans/microbiología , Escherichia coli/genética , Perfilación de la Expresión Génica , Liasa de Heparina/aislamiento & purificación , Humanos , Huésped Inmunocomprometido , Mutación/genética , Operón/genética , Infecciones por Pseudomonas/sangre , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismoRESUMEN
OBJECTIVES: Contact lens-acquired bacterial infections are a serious problem. Of the reported cases, inadequate cleaning of the lens case was the most common cause of lens contamination. Organoselenium has been shown to inhibit bacterial attachment to different polymer materials. This study evaluates the ability of an organoselenium monomer, incorporated into the polymer of a polypropylene contact lens case coupon, to block the formation of biofilms in a lens case. METHODS: The bacteria tested were Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia, and Serratia marcescens. For this study, the bacteria were allowed to grow overnight, in trypticase soy broth media, in the presence of the selenium-containing polymer or the same polymer without organoselenium. The material was studied by both colony-forming unit determination and by confocal laser scanning microscopy. RESULTS: The results showed that the organoselenium polymer versus the control polymer resulted in the following effect on biofilm formation: (1) a reduction in P. aeruginosa of 7.3 logs (100%); (2) a reduction in S. aureus of 7.3 logs (100%); (3) a reduction in S. maltophilia of 7.5 logs (100%); and (4) a reduction in S. marcescens reduction of 3.3 logs (99.9%). To test the stability of the organoselenium polypropylene contact lens coupon, the coupon was soaked in PBS for eight weeks at room temperature. It was found that when these soaked coupons were tested against S. aureus, complete inhibition (8.1 logs) was obtained. Because organoselenium cannot leach from the polymer, this would imply that the organoselenium polypropylene contact lens case coupon would be inhibitory toward bacterial biofilm for the life of the case. CONCLUSION: The organoselenium polypropylene contact lens case coupon shows the ability to inhibit biofilm formation. The use of organoselenium copolymer should play an important role in protecting against contact lens case-acquired infection.
Asunto(s)
Biopelículas/efectos de los fármacos , Lentes de Contacto/microbiología , Contaminación de Equipos/prevención & control , Compuestos de Organoselenio/farmacología , Soluciones para Lentes de Contacto/farmacología , Infecciones Bacterianas del Ojo/prevención & control , Humanos , Compuestos de Organoselenio/química , Polipropilenos/química , Pseudomonas aeruginosa/efectos de los fármacos , Serratia marcescens/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Stenotrophomonas maltophilia/efectos de los fármacosRESUMEN
For proper wound healing, control of bacteria or bacterial infections is of major importance. While caring for a wound, dressing material plays a key role as bacteria can live in the bandage and keep re-infecting the wound. They do this by forming biofilms in the bandage, which slough off planktonic bacteria and overwhelm the host defense. It is thus necessary to develop a wound dressing that will inhibit bacterial growth. This study examines the effectiveness of a polyurethane foam wound dressing bound with polydiallyl-dimethylammonium chloride (pDADMAC) to inhibit the growth of bacteria in a wound on the back of a mouse. This technology does not allow pDADMAC to leach away from the dressing into the wound, thereby preventing cytotoxic effects. Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii were chosen for the study to infect the wounds. S. aureus and P. aeruginosa are important pathogens in wound infections, while A. baumannii was selected because of its ability to acquire or upregulate antibiotic drug resistance determinants. In addition, two different isolates of methicillin-resistant S. aureus (MRSA) were tested. All the bacteria were measured in the wound dressing and in the wound tissue under the dressing. Using colony-forming unit (CFU) assays, over six logs of inhibition (100%) were found for all the bacterial strains using pDADMAC-treated wound dressing when compared with control-untreated dressing. The CFU assay results obtained with the tissues were significant as there were 4-5 logs of reduction (100%) of the test organism in the tissue of the pDADMAC-covered wound versus that of the control dressing-covered wound. As the pDADMAC cannot leave the dressing (like other antimicrobials), this would imply that the dressing acts as a reservoir for free bacteria from a biofilm and plays a significant role in the development of a wound infection.
Asunto(s)
Infecciones Bacterianas/terapia , Biopelículas/efectos de los fármacos , Dimetilaminas/uso terapéutico , Apósitos Oclusivos , Cicatrización de Heridas/fisiología , Infección de Heridas/terapia , Heridas y Lesiones/terapia , Animales , Modelos Animales de Enfermedad , Ratones , Uretano , Infección de Heridas/microbiologíaRESUMEN
Bacterial infection of acute and chronic wounds impedes wound healing significantly. Part of this impediment is the ability of bacterial pathogens to grow in wound dressings. In this study, we examined the effectiveness of a polyurethane (PU) foam wound dressings coated with poly diallyl-dimethylammonium chloride (pDADMAC-PU) to inhibit the growth and biofilm development by three main wound pathogens, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, within the wound dressing. pDADMAC-PU inhibited the growth of all three pathogens. Time-kill curves were conducted both with and without serum to determine the killing kinetic of pDADMAC-PU. pDADMAC-PU killed S. aureus, A. baumannii, and P. aeruginosa. The effect of pDADMAC-PU on biofilm development was analyzed quantitatively and qualitatively. Quantitative analysis, colony-forming unit assay, revealed that pDADMAC-PU dressing produced more than eight log reduction in biofilm formation by each pathogen. Visualization of the biofilms by either confocal laser scanning microscopy or scanning electron microscopy confirmed these findings. In addition, it was found that the pDADMAC-PU-treated foam totally inhibited migration of bacteria through the foam for all three bacterial strains. These results suggest that pDADMAC-PU is an effective wound dressing that inhibits the growth of wound pathogens both within the wound and in the wound dressing.
Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Compuestos Alílicos/farmacología , Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Vendajes , Biopelículas/efectos de los fármacos , Poliuretanos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , Staphylococcus aureus/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Heridas y Lesiones/microbiología , Compuestos Alílicos/administración & dosificación , Antibacterianos/administración & dosificación , Biopelículas/crecimiento & desarrollo , Humanos , Microscopía Electrónica de Rastreo , Poliuretanos/administración & dosificación , Compuestos de Amonio Cuaternario/administración & dosificación , Resultado del Tratamiento , Infección de Heridas/microbiología , Heridas y Lesiones/tratamiento farmacológicoRESUMEN
The chemical composition and biofilm regulation of 15 metabolites from Teucrium polium are reported. Compounds were isolated from a CH2Cl2-MeOH extract of the aerial parts of the plant and included iridoid and phenylethanol glycosides and a monoterpenoid, together with nine known compounds. The structures were elucidated based on standard spectroscopic (UV, (1)H and (13)C NMR), 2D NMR ((1)H-(1)H COSY, HMQC, HMBC, and NOESY), and/or LC-ESIMS/MS data analyses. Inhibition of the biofilm-forming strain Staphylococcus aureus was observed with exposure to compounds 7 and 8.
Asunto(s)
Biopelículas/efectos de los fármacos , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Glicósidos Iridoides/aislamiento & purificación , Monoterpenos/aislamiento & purificación , Monoterpenos/farmacología , Alcohol Feniletílico/aislamiento & purificación , Alcohol Feniletílico/farmacología , Staphylococcus aureus/efectos de los fármacos , Teucrium/química , Egipto , Flavonoides/química , Glicósidos Iridoides/química , Glicósidos Iridoides/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Monoterpenos/química , Resonancia Magnética Nuclear Biomolecular , Alcohol Feniletílico/químicaRESUMEN
Loss of the skin barrier facilitates the colonization of underlying tissues with various bacteria, where they form biofilms that protect them from antibiotics and host responses. Such wounds then become chronically infected. Topical antimicrobials are a major component of chronic wound therapy, yet currently available topical antimicrobials vary in their effectiveness on biofilm-forming pathogens. In this study, we evaluated the efficacy of Next Science wound gel technology (NxtSc), a novel topical agent designed to kill planktonic bacteria, penetrate biofilms, and kill the bacteria within. In vitro quantitative analysis, using strains isolated from wounds, showed that NxtSc inhibited biofilm development by Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae by inhibiting bacterial growth. The gel formulation NxtSc-G5, when applied to biofilms preformed by these pathogens, reduced the numbers of bacteria present by 7 to 8 log10 CFU/disc or CFU/g. In vivo, NxtSc-G5 prevented biofilm formation for 72 h when applied at the time of wounding and infection and eliminated biofilm infection when applied 24 h after wounding and infection. Storage of NxtSc-G5 at room temperature for 9 months did not diminish its efficacy. These results establish that NxtSc is efficacious in vitro and in vivo in preventing infection and biofilm development by different wound pathogens when applied immediately and in eliminating biofilm infection already established by these pathogens. This novel antimicrobial agent, which is nontoxic and has a usefully long shelf life, shows promise as an effective agent for the prevention and treatment of biofilm-related infections.
Asunto(s)
Infecciones por Acinetobacter/prevención & control , Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Infecciones por Klebsiella/prevención & control , Infecciones por Pseudomonas/prevención & control , Infecciones Estafilocócicas/prevención & control , Infección de Heridas/prevención & control , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Administración Tópica , Animales , Biopelículas/crecimiento & desarrollo , Femenino , Geles/farmacología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Ratones , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiologíaRESUMEN
In Pseudomonas aeruginosa, type IV pili (TFP)-dependent twitching motility is required for development of surface-attached biofilm (SABF), yet excessive twitching motility is detrimental once SABF is established. In this study, we show that mucin significantly enhanced twitching motility and decreased SABF formation in strain PAO1 and other P. aeruginosa strains in a concentration-dependent manner. Mucin also disrupted partially established SABF. Our analyses revealed that mucin increased the amount of surface pilin and enhanced transcription of the pilin structural gene pilA. Mucin failed to enhance twitching motility in P. aeruginosa mutants defective in genes within the pilin biogenesis operons pilGHI/pilJK-chpA-E. Furthermore, mucin did not enhance twitching motility nor reduce biofilm development by chelating iron. We also examined the role of the virulence factor regulator Vfr in the effect of mucin. In the presence or absence of mucin, PAOΔvfr produced a significantly reduced SABF. However, mucin partially complemented the twitching motility defect of PAOΔvfr. These results suggest that mucin interferes with SABF formation at specific concentrations by enhancing TFP synthesis and twitching motility, that this effect, which is iron-independent, requires functional Vfr, and only part of the Vfr-dependent effect of mucin on SABF development occurs through twitching motility.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Fimbrias Bacterianas/fisiología , Mucinas/fisiología , Pseudomonas aeruginosa/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Movimiento , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidadRESUMEN
Multidrug-resistant bacteria present a significant public health challenge; such pathogens exhibit reduced susceptibility to conventional antibiotics, limiting current treatment options. Cationic non-ribosomal peptides (CNRPs) such as brevicidine and polymyxins have emerged as promising candidates to block Gram-negative bacteria. To investigate the capability of bacteria to biosynthesize CNRPs, and specifically polymyxins, over 11,000 bacterial genomes were mined in silico. Paenibacillus polymyxa was identified as having a robust biosynthetic capacity, based on multiple polymyxin gene clusters. P. polymyxa biosynthetic competence was confirmed by metabolite characterization via HPLC purification and MALDI TOF/TOF analysis. When grown in a selected medium, the metabolite yield was 4 mg/L with a 20-fold specific activity increase. Polymyxin B (PMB) was assayed with select nosocomial pathogens, including Pseudomonas aeruginosa, Klebsiella pneumonia, and Acinetobacter baumaii, which exhibited minimum inhibitory concentrations of 4, 1, and 1 µg/mL, respectively.
RESUMEN
Versatility in carbon source utilization assists Pseudomonas aeruginosa in its adaptation to various niches. Recently, we characterized the role of malonate, an understudied carbon source, in quorum sensing regulation, antibiotic resistance, and virulence factor production in P. aeruginosa . These results indicate that global responses to malonate metabolism remain to be uncovered. We leveraged a publicly available metabolomic dataset on human airway and found malonate to be as abundant as glycerol, a common airway metabolite and carbon source for P. aeruginosa . Here, we explored and compared adaptations of P. aeruginosa UCBPP-PA14 (PA14) in response to malonate or glycerol as a sole carbon source using transcriptomics and phenotypic assays. Malonate utilization activated glyoxylate and methylcitrate cycles and induced several stress responses, including oxidative, anaerobic, and metal stress responses associated with increases in intracellular aluminum and strontium. Some induced genes were required for optimal growth of P. aeruginosa in malonate. To assess the conservation of malonate-associated responses among P. aeruginosa strains, we compared our findings in strain PA14 with other lab strains and cystic fibrosis isolates of P. aeruginosa . Most strains grew on malonate as a sole carbon source as efficiently as or better than glycerol. While not all responses to malonate were conserved among strains, formation of biomineralized biofilm-like aggregates, increased tolerance to kanamycin, and increased susceptibility to norfloxacin were the most frequently observed phenotypes. Our findings reveal global remodeling of P. aeruginosa gene expression during its growth on malonate as a sole carbon source that is accompanied by several important phenotypic changes. These findings add to accumulating literature highlighting the role of different carbon sources in the physiology of P. aeruginosa and its niche adaptation. Importance: Pseudomonas aeruginosa is a notorious pathogen that causes local and systemic infections in immunocompromised individuals. Different carbon sources can uniquely modulate metabolic and virulence pathways in P. aeruginosa , highlighting the importance of the environment that the pathogen occupies. In this work, we used a combination of transcriptomic analysis and phenotypic assays to determine how malonate utilization impacts P. aeruginosa, as recent evidence indicates this carbon source may be relevant to certain niches associated within the human host. We found that malonate utilization can induce global stress responses, alter metabolic circuits, and influence various phenotypes of P. aeruginosa that could influence host colonization. Investigating the metabolism of malonate provides insight into P. aeruginosa adaptations to specific niches where this substrate is abundant, and how it can be leveraged in the development of much-needed antimicrobial agents or identification of new therapeutic targets of this difficult-to-eradicate pathogen.
RESUMEN
Versatility in carbon source utilization is a major contributor to niche adaptation in Pseudomonas aeruginosa. Malonate is among the abundant carbon sources in the lung airways, yet it is understudied. Recently, we characterized how malonate impacts quorum sensing regulation, antibiotic resistance, and virulence factor production in P. aeruginosa. Herein, we show that malonate as a carbon source supports more robust growth in comparison to glycerol in several cystic fibrosis isolates of P. aeruginosa. Furthermore, we show phenotypic responses to malonate were conserved among clinical strains, i.e., formation of biomineralized biofilm-like aggregates, increased tolerance to kanamycin, and increased susceptibility to norfloxacin. Moreover, we explored transcriptional adaptations of P. aeruginosa UCBPP-PA14 (PA14) in response to malonate versus glycerol as a sole carbon source using transcriptomics. Malonate utilization activated glyoxylate and methylcitrate cycles and induced several stress responses, including oxidative, anaerobic, and metal stress responses associated with increases in intracellular aluminum and strontium. We identified several genes that were required for optimal growth of P. aeruginosa in malonate. Our findings reveal important remodeling of P. aeruginosa gene expression during its growth on malonate as a sole carbon source that is accompanied by several important phenotypic changes. These findings add to the accumulating literature highlighting the role of different carbon sources in the physiology of P. aeruginosa and its niche adaptation.
RESUMEN
BACKGROUND: Pseudomonas aeruginosa Vfr (the virulence factor regulator) enhances P. aeruginosa virulence by positively regulating the expression of numerous virulence genes. A previous microarray analysis identified numerous genes positively regulated by Vfr in strain PAK, including the yet uncharacterized PA2782 and PA2783. RESULTS: In this study, we report the detailed characterization of PA2783 in the P. aeruginosa strain PAO1. RT-PCR analysis confirmed that PA2782-PA2783 constitute an operon. A mutation in vfr significantly reduced the expression of both genes. The predicted protein encoded by PA2783 contains a typical leader peptide at its amino terminus end as well as metalloendopeptidase and carbohydrate binding motifs at its amino terminus and carboxy terminus regions, respectively. An in-frame PA2783::phoA fusion encoded a hybrid protein that was exported to the periplasmic space of Escherichia coli and P. aeruginosa. In PAO1, the proteolytic activity of the PA2783-encoded protein was masked by other P. aeruginosa extracellular proteases but an E. coli strain carrying a PA2783 recombinant plasmid produced considerable proteolytic activity. The outer membrane fraction of an E. coli strain in which PA2783 was overexpressed contained specific endopeptidase activity. In the presence of cAMP, purified recombinant Vfr (rVfr) bound to a 98-bp fragment within the PA2782-PA2783 upstream region that carries a putative Vfr consensus sequence. Through a series of electrophoretic mobility shift assays, we localized rVfr binding to a 33-bp fragment that contains part of the Vfr consensus sequence and a 5-bp imperfect (3/5) inverted repeat at its 3' and 5' ends (TGGCG-N22-CGCTG). Deletion of either repeat eliminated Vfr binding. CONCLUSIONS: PA2782 and PA2783 constitute an operon whose transcription is positively regulated by Vfr. The expression of PA2783 throughout the growth cycle of P. aeruginosa follows a unique pattern. PA2783 codes for a secreted metalloendopeptidase, which we named Mep72. Mep72, which has metalloendopeptidase and carbohydrate-binding domains, produced proteolytic and endopeptidase activities in E. coli. Vfr directly regulates the expression of the PA2782-mep72 operon by binding to its upstream region. However, unlike other Vfr-targeted genes, Vfr binding does not require an intact Vfr consensus binding sequence.