Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(17): 3155-3170.e8, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37595580

RESUMEN

The Hippo pathway is known for its crucial involvement in development, regeneration, organ size control, and cancer. While energy stress is known to activate the Hippo pathway and inhibit its effector YAP, the precise role of the Hippo pathway in energy stress response remains unclear. Here, we report a YAP-independent function of the Hippo pathway in facilitating autophagy and cell survival in response to energy stress, a process mediated by its upstream components MAP4K2 and STRIPAK. Mechanistically, energy stress disrupts the MAP4K2-STRIPAK association, leading to the activation of MAP4K2. Subsequently, MAP4K2 phosphorylates ATG8-family member LC3, thereby facilitating autophagic flux. MAP4K2 is highly expressed in head and neck cancer, and its mediated autophagy is required for head and neck tumor growth in mice. Altogether, our study unveils a noncanonical role of the Hippo pathway in energy stress response, shedding light on this key growth-related pathway in tissue homeostasis and cancer.


Asunto(s)
Autofagia , Vía de Señalización Hippo , Animales , Ratones , Supervivencia Celular , Tamaño de los Órganos
2.
Cell ; 162(5): 961-73, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26317465

RESUMEN

DNA-demethylating agents have shown clinical anti-tumor efficacy via an unknown mechanism of action. Using a combination of experimental and bioinformatics analyses in colorectal cancer cells, we demonstrate that low-dose 5-AZA-CdR targets colorectal cancer-initiating cells (CICs) by inducing viral mimicry. This is associated with induction of dsRNAs derived at least in part from endogenous retroviral elements, activation of the MDA5/MAVS RNA recognition pathway, and downstream activation of IRF7. Indeed, disruption of virus recognition pathways, by individually knocking down MDA5, MAVS, or IRF7, inhibits the ability of 5-AZA-CdR to target colorectal CICs and significantly decreases 5-AZA-CdR long-term growth effects. Moreover, transfection of dsRNA into CICs can mimic the effects of 5-AZA-CdR. Together, our results represent a major shift in understanding the anti-tumor mechanisms of DNA-demethylating agents and highlight the MDA5/MAVS/IRF7 pathway as a potentially druggable target against CICs.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Azacitidina/análogos & derivados , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Azacitidina/farmacología , Células Cultivadas , ARN Helicasas DEAD-box/metabolismo , Metilación de ADN/efectos de los fármacos , Decitabina , Retrovirus Endógenos/metabolismo , Humanos , Factor 7 Regulador del Interferón/metabolismo , Helicasa Inducida por Interferón IFIH1 , Ratones , ARN Bicatenario/metabolismo , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal
3.
EMBO J ; 42(11): e113970, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37073568

RESUMEN

The Hippo pathway is an evolutionarily conserved pathway with crucial roles in development, organ size control, tissue homeostasis and cancer. Over two decades of research have elucidated the core Hippo pathway kinase cascade, but its precise organization has not been fully understood. In this issue of The EMBO Journal, Qi et al (2023) report a new model of two modules for the Hippo kinase cascade, providing new insights into this long-standing question.


Asunto(s)
Proteínas de Drosophila , Neoplasias , Humanos , Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
4.
Mol Cell ; 72(2): 328-340.e8, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30293781

RESUMEN

The Hippo pathway plays a crucial role in organ size control and tumor suppression, but its precise regulation is not fully understood. In this study, we discovered that phosphatidic acid (PA)-related lipid signaling is a key regulator of the Hippo pathway. Supplementing PA in various Hippo-activating conditions activates YAP. This PA-related lipid signaling is involved in Rho-mediated YAP activation. Mechanistically, PA directly interacts with Hippo components LATS and NF2 to disrupt LATS-MOB1 complex formation and NF2-mediated LATS membrane translocation and activation, respectively. Inhibition of phospholipase D (PLD)-dependent PA production suppresses YAP oncogenic activities. PLD1 is highly expressed in breast cancer and positively correlates with YAP activation, suggesting their pathological relevance in breast cancer development. Taken together, our study not only reveals a role of PLD-PA lipid signaling in regulating the Hippo pathway but also indicates that the PLD-PA-YAP axis is a potential therapeutic target for cancer treatment.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Ácidos Fosfatidicos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Animales , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Femenino , Células HEK293 , Vía de Señalización Hippo , Humanos , Estimulante Tiroideo de Acción Prolongada/metabolismo , Ratones , Ratones Desnudos , Neurofibromina 2/metabolismo , Proteínas Nucleares/metabolismo , Fosfolipasa D/metabolismo , Fosfoproteínas/metabolismo
5.
Dev Biol ; 502: 20-37, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37423592

RESUMEN

The mechanism by which transcription factor (TF) network instructs cell-type-specific transcriptional programs to drive primitive endoderm (PrE) progenitors to commit to parietal endoderm (PE) versus visceral endoderm (VE) cell fates remains poorly understood. To address the question, we analyzed the single-cell transcriptional signatures defining PrE, PE, and VE cell states during the onset of the PE-VE lineage bifurcation. By coupling with the epigenomic comparison of active enhancers unique to PE and VE cells, we identified GATA6, SOX17, and FOXA2 as central regulators for the lineage divergence. Transcriptomic analysis of cXEN cells, an in vitro model for PE cells, after the acute depletion of GATA6 or SOX17 demonstrated that these factors induce Mycn, imparting the self-renewal properties of PE cells. Concurrently, they suppress the VE gene program, including key genes like Hnf4a and Ttr, among others. We proceeded with RNA-seq analysis on cXEN cells with FOXA2 knockout, in conjunction with GATA6 or SOX17 depletion. We found FOXA2 acts as a potent suppressor of Mycn while simultaneously activating the VE gene program. The antagonistic gene regulatory activities of GATA6/SOX17 and FOXA2 in promoting alternative cell fates, and their physical co-bindings at the enhancers provide molecular insights to the plasticity of the PrE lineage. Finally, we show that the external cue, BMP signaling, promotes the VE cell fate by activation of VE TFs and repression of PE TFs including GATA6 and SOX17. These data reveal a putative core gene regulatory module that underpins PE and VE cell fate choice.


Asunto(s)
Endodermo , Redes Reguladoras de Genes , Proteína Proto-Oncogénica N-Myc/genética , Diferenciación Celular/genética , Factores de Transcripción/genética , Regulación del Desarrollo de la Expresión Génica/genética
6.
BMC Genomics ; 25(1): 52, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212682

RESUMEN

BACKGROUND: Most skin-related traits have been studied in Caucasian genetic backgrounds. A comprehensive study on skin-associated genetic effects on underrepresented populations such as Vietnam is needed to fill the gaps in the field. OBJECTIVES: We aimed to develop a computational pipeline to predict the effect of genetic factors on skin traits using public data (GWAS catalogs and whole-genome sequencing (WGS) data from the 1000 Genomes Project-1KGP) and in-house Vietnamese data (WGS and genotyping by SNP array). Also, we compared the genetic predispositions of 25 skin-related traits of Vietnamese population to others to acquire population-specific insights regarding skin health. METHODS: Vietnamese cohorts of whole-genome sequencing (WGS) of 1008 healthy individuals for the reference and 96 genotyping samples (which do not have any skin cutaneous issues) by Infinium Asian Screening Array-24 v1.0 BeadChip were employed to predict skin-associated genetic variants of 25 skin-related and micronutrient requirement traits in population analysis and correlation analysis. Simultaneously, we compared the landscape of cutaneous issues of Vietnamese people with other populations by assessing their genetic profiles. RESULTS: The skin-related genetic profile of Vietnamese cohorts was similar at most to East Asian cohorts (JPT: Fst = 0.036, CHB: Fst = 0.031, CHS: Fst = 0.027, CDX: Fst = 0.025) in the population study. In addition, we identified pairs of skin traits at high risk of frequent co-occurrence (such as skin aging and wrinkles (r = 0.45, p = 1.50e-5) or collagen degradation and moisturizing (r = 0.35, p = 1.1e-3)). CONCLUSION: This is the first investigation in Vietnam to explore genetic variants of facial skin. These findings could improve inadequate skin-related genetic diversity in the currently published database.


Asunto(s)
Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Piel , Pueblos del Sudeste Asiático , Humanos , Estudio de Asociación del Genoma Completo , Fenotipo , Vietnam
7.
J Am Chem Soc ; 146(29): 20158-20167, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38978232

RESUMEN

The development of architecturally unique molecular nanocarbons by bottom-up organic synthesis is essential for accessing functional organic materials awaiting technological developments in fields such as energy, electronics, and biomedicine. Herein, we describe the design and synthesis of a triptycene-based three-dimensional (3D) nanocarbon, GFN-1, with geometrical flexibility on account of its three peripheral π-panels being capable of interconverting between two curved conformations. An effective through-space electronic communication among the three π-panels of GFN-1 has been observed in its monocationic radical form, which exhibits an extensively delocalized spin density over the entire 3D π-system as revealed by electron paramagnetic resonance and UV-vis-NIR spectroscopies. The flexible 3D molecular architecture of GFN-1, along with its densely packed superstructures in the presence of fullerenes, is revealed by microcrystal electron diffraction and single-crystal X-ray diffraction, which establish the coexistence of both propeller and tweezer conformations in the solid state. GFN-1 exhibits strong binding affinities for fullerenes, leading to host-guest complexes that display rapid photoinduced electron transfer within a picosecond. The outcomes of this research could pave the way for the utilization of shape and electronically complementary nanocarbons in the construction of functional coassemblies.

8.
J Am Chem Soc ; 146(14): 9801-9810, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38551407

RESUMEN

The sequence-controlled assembly of nucleic acids and amino acids into well-defined superstructures constitutes one of the most revolutionary technologies in modern science. The elaboration of such superstructures from carbohydrates, however, remains elusive and largely unexplored on account of their intrinsic constitutional and configurational complexity, not to mention their inherent conformational flexibility. Here, we report the bottom-up assembly of two classes of hierarchical superstructures that are formed from a highly flexible cyclo-oligosaccharide─namely, cyclofructan-6 (CF-6). The formation of coordinative bonds between the oxygen atoms of CF-6 and alkali metal cations (i) locks a myriad of flexible conformations of CF-6 into a few rigid conformations, (ii) bridges adjacent CF-6 ligands, and (iii) gives rise to the multiple-level assembly of three extended frameworks. The hierarchical superstructures present in these frameworks have been shown to modulate their nanomechanical properties. This research highlights the unique opportunities of constructing convoluted superstructures from carbohydrates and should encourage future endeavors in this underinvestigated field of science.


Asunto(s)
Carbohidratos , Metales , Metales/química , Carbohidratos/química , Conformación Molecular , Aminoácidos
9.
Am J Epidemiol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38806817

RESUMEN

Adherence to healthy lifestyle is essential for diabetes management in light of the plateaued metabolic control, diversifying causes of death, and continued excess mortality among people with diabetes (PWD). This study aims to assess the secular trend of adherence to healthy behaviors among PWD in NHANES, a nationally representative survey of Americans using a stratified, multistage probability design in 2-year cycles since 1999. Adherence to healthy lifestyle was estimated using never smoking, moderate drinking, adequate physical activity, and healthy diet, and the score ranged 0-4. Among 7410 participants, adherence to healthy behaviors across time slightly increased from 1.4 (95% CI, 1.3 to 1.5) in 1999-2002 to 1.6 (1.5 to 1.8) in 2015-2018 (Ptrend = 0.002). The non-Hispanic Blacks caught up with the non-Hispanic Whites in overall lifestyle score (1.7 vs. 1.6 in 2015-2018), while large socioeconomic disparities remained in that participants with higher income and education level, and covered by health insurance were more likely to have adherence to healthy behaviors. As the metabolic control plateaued and causes of death have diversified among PWD, our findings suggested a great potential of lifestyle modification in facilitating the long-term health of these patients.

10.
EMBO J ; 39(1): e102406, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31782549

RESUMEN

The Hippo pathway, which plays a critical role in organ size control and cancer, features numerous WW domain-based protein-protein interactions. However, ~100 WW domains and 2,000 PY motif-containing peptide ligands are found in the human proteome, raising a "WW-PY" binding specificity issue in the Hippo pathway. In this study, we have established the WW domain binding specificity for Hippo pathway components and uncovered a unique amino acid sequence required for it. By using this criterion, we have identified a WW domain-containing protein, STXBP4, as a negative regulator of YAP. Mechanistically, STXBP4 assembles a protein complex comprising α-catenin and a group of Hippo PY motif-containing components/regulators to inhibit YAP, a process that is regulated by actin cytoskeleton tension. Interestingly, STXBP4 is a potential tumor suppressor for human kidney cancer, whose downregulation is correlated with YAP activation in clear cell renal cell carcinoma. Taken together, our study not only elucidates the WW domain binding specificity for the Hippo pathway, but also reveals STXBP4 as a player in actin cytoskeleton tension-mediated Hippo pathway regulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Proliferación Celular , Femenino , Vía de Señalización Hippo , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Tasa de Supervivencia , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transcripción Genética , Células Tumorales Cultivadas , Proteínas de Transporte Vesicular/genética , Dominios WW , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP
11.
Small ; 20(8): e2305725, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37828637

RESUMEN

From the view of geometry, chirality is that an object cannot overlap with its mirror image, which has been a fundamental scientific problem in biology and chemistry since the 19th century. Chiral inorganic nanomaterials serve as ideal templates for investigating chiral transfer and amplification mechanisms between molecule and bulk materials, garnering widespread attentions. The chiroptical property of chiral plasmonic nanomaterials is enhanced through localized surface plasmon resonance effects, which exhibits distinctive circular dichroism (CD) response across a wide wavelength range. Recently, 3D chiral plasmonic nanomaterials are becoming a focal research point due to their unique characteristics and planar-independence. This review provides an overview of recent progresses in 3D chiral plasmonic nanomaterials studies. It begins by discussing the mechanisms of plasmonic enhancement of molecular CD response, following by a detailed presentation of novel classifications of 3D chiral plasmonic nanomaterials. Finally, the applications of 3D chiral nanomaterials such as biology, sensing, chiral catalysis, photology, and other fields have been discussed and prospected. It is hoped that this review will contribute to the flourishing development of 3D chiral nanomaterials.

12.
Pancreatology ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39256133

RESUMEN

BACKGROUND/OBJECTIVES: The prognostic significance of circumferential resection margin (CRM) or circumferential surface (CS) in pancreatic head cancer is controversial. We investigated the survival outcomes according to CRM or CS involvement in pancreatoduodenectomy specimens of pancreatic ductal adenocarcinoma (PDAC). METHODS: A total of 102 pancreatoduodenectomy specimens after upfront surgery for PDAC between 2014 and 2018 were prospectively collected. The superior mesenteric vein/portal vein or superior mesenteric artery margins were classified as CRM, and the anterior or posterior surfaces as CS. Survival outcomes and recurrence were compared according to the CRM/CS status, which was categorized into R10mm, R11mm, and R0 (≥1 mm) by the 0 and 1 mm rules. RESULTS: For CRM, R10mm had significantly lower overall survival (OS) (P < 0.001) and disease-free survival (P < 0.001) rates than R11mm and R0, with no difference between R11mm and R0. For CS, R0 had a significantly higher OS rate (P < 0.001) than R10mm and R11mm, with no difference between R10mm and R11mm. In multivariable analysis, R10mm CRM was an independent risk factor for OS (hazard ratio 2.410, P = 0.003) and DFS (hazard ratio 5.019, P < 0.001). When CRM/CS were analyzed separately, only the R10mm superior mesenteric artery margin was significantly associated with local recurrence (P = 0.012). CONCLUSIONS: The results suggest that CRM involvement defined by the 0 mm rule is more appropriate than the 1 mm rule for predicting survival outcomes, but CS involvement defined by the 0 or 1 mm rules is not prognostically significant.

13.
Mol Cell Proteomics ; 21(2): 100195, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35007762

RESUMEN

Mammalian phospholipase D (PLD) enzyme family consists of six members. Among them, PLD1/2/6 catalyzes phosphatidic acid (PA) production, while PLD3/4/5 has no catalytic activities. Deregulation of the PLD-PA lipid signaling has been associated with various human diseases including cancer. However, a comprehensive analysis of the regulators and effectors for this crucial lipid metabolic pathway has not been fully achieved. Using a proteomic approach, we defined the protein interaction network for the human PLD family of enzymes and PA and revealed diverse cellular signaling events involving them. Through it, we identified PJA2 as a novel E3 ubiquitin ligase for PLD1 involved in control of the PLD1-mediated mammalian target of rapamycin signaling. Additionally, we showed that PA interacted with and positively regulated sphingosine kinase 1. Taken together, our study not only generates a rich interactome resource for further characterizing the human PLD-PA lipid signaling but also connects this important metabolic pathway with numerous biological processes.


Asunto(s)
Fosfolipasa D , Humanos , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo , Mapas de Interacción de Proteínas , Proteómica , Transducción de Señal/fisiología
14.
Appl Opt ; 63(2): 437-444, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38227240

RESUMEN

Polarization imaging, based on the measurement of polarization parameters containing specific physical information, has found extensive applications across various domains. Among these parameters, polarization angle information plays a crucial role in revealing texture details. However, in practical scenarios, noise during image acquisition can lead to significant degradation of polarization angle information. To address this issue, we introduce a novel, to the best of our knowledge, polarization angle information enhancement method based on polarimetric array imaging. Our proposed method utilizes the principles of polarimetric array imaging to effectively restore texture information embedded within polarization angle images. Through the deployment of a self-designed polarimetric array imaging system, we conducted experiments in diverse scenes to validate the efficacy of our approach. The acquired polarization angle data were subjected to our method for enhancement. The experimental outcomes distinctly illustrate the noise suppression capabilities of our method, showcasing its ability to faithfully reconstruct intricate details obscured by substantial noise interference.

15.
Ophthalmic Res ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38555640

RESUMEN

INTRODUCTION: This study aimed to investigate the relationship between age of myopia onset and high myopia and to explore if age of onset mediated the associations of high myopia with parental myopia and time spent on electronics. METHODS: This cross-sectional study enrolled 1118 myopic patients aged 18 to 40. Information was obtained via a detailed questionnaire. Multivariable logistic regression and linear regression models were utilized to assess age of onset in relation to high myopia and spherical equivalent refractive error, respectively. Structural equation models examined the mediated effect of onset age on the association between parental myopia, time spent on electronics and high myopia. RESULTS: An early age at myopia onset was negatively correlated with spherical equivalent refractive power. Subjects who developed myopia before the age of 12 were more likely to suffer from high myopia than those who developed myopia after the age of 15. Age of myopia onset was the strongest predictor of high myopia, with an area under the curve (AUC) in Receiver Operator Characteristic (ROC) analysis of 0.80. Additionally, age of myopia onset served as a mediator in the relationships between parental myopia, electronic device usage duration, and the onset of high myopia in adulthood. CONCLUSIONS: Age of myopia onset might be the single best predictor for high myopia, and age at onset appeared to mediate the associations of high myopia with parental myopia and time spent on electronics.

16.
Biomed Chromatogr ; 38(9): e5951, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38956830

RESUMEN

Loganic acid is an iridoid compound extracted from Gentianaceae plant Gentiana macrophylla Pall. It can effectively inhibit inflammation and tumor migration and has antioxidant activity. In this paper, we establish a simple, fast, sensitive and validated LC-MS method with the purpose of quantification of loganic acid in rat plasma with gliclazide as an internal standard (IS). Methanol was used to precipitate the protein in the plasma sample, and a C18 column (2.1 × 50 mm, 1.7 µm) was used for the separation of the target compound. Meanwhile, 0.1% formic acid water-methanol was employed as the mobile phase. Multiple reaction monitoring detection mode was adopted in detection with m/z 375.1 > 213.2 for loganic acid and m/z 322.1 > 169.9 for the IS, respectively, in negative ion scan mode. The linear range of calibration curve was 5.77-11,540.00 ng/ml, and the lower limit of detedtion was 2.89 ng/ml. The inter-day and intra-day precision and accuracy were <15% for lower limit of quantitation, low, middle and high quality control samples. This method was successfully used for the pharmacokinetic study of loganic acid in rat plasma at a dose range of 50-150 mg/kg for oral administration and 2 mg/kg for intravenous administration. The pharmacokinetic results showed that the oral bioavailability of loganic acid was low (2.71-5.58%).


Asunto(s)
Iridoides , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Animales , Ratas , Iridoides/farmacocinética , Iridoides/sangre , Iridoides/química , Límite de Detección , Modelos Lineales , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem/métodos
17.
Nano Lett ; 23(19): 9034-9041, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37728246

RESUMEN

The highly reflective solar radiation of passive daytime radiative cooling (PDRC) increases heating energy consumption in the cold winter. Inspired by the temperature-adaptive skin color of chameleon, we efficiently combine temperature-adaptive solar absorption and PDRC technology to achieve "warm in winter and cool in summer". The temperature-adaptive radiative cooling coating (TARCC) with color variability is designed and fabricated, achieving 41% visible light regulation capability. Comprehensive seasonal outdoor tests confirm the reliability of the TARCC: in summer, the TARCC exhibits high solar reflectance (∼93%) and atmospheric transmission window emittance (∼94%), resulting in a 6.5 K subambient temperature. In the winter, the TARCC's dark color strongly absorbs solar radiation, resulting in a 4.3 K temperature rise. Compared with PDRC coatings, the TARCC can save up to 20% of annual energy in midlatitude regions and increase suitable human hours by 55%. With its low cost, easy preparation, and simple construction, the TARCC shows promise for achieving sustainable and comfortable indoor environments.

18.
Angew Chem Int Ed Engl ; 63(23): e202402139, 2024 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-38563765

RESUMEN

The development of artificial receptors that combine ultrahigh-affinity binding and controllable release for active guests holds significant importance in biomedical applications. On one hand, a complex with an exceedingly high binding affinity can resist unwanted dissociation induced by dilution effect and complex interferents within physiological environments. On the other hand, stimulus-responsive release of the guest is essential for precisely activating its function. In this context, we expanded hydrophobic cavity surface of a hypoxia-responsive azocalix[4]arene, affording Naph-SAC4A. This modification significantly enhanced its aqueous binding affinity to 1013 M-1, akin to the naturally occurring strongest recognition pair, biotin/(strept-)avidin. Consequently, Naph-SAC4A emerges as the first artificial receptor to simultaneously integrate ultrahigh recognition affinity and actively controllable release. The markedly enhanced affinity not only improved Naph-SAC4A's sensitivity in detecting rocuronium bromide in serum, but also refined the precision of hypoxia-responsive doxorubicin delivery at the cellular level, demonstrating its immense potential for diverse practical applications.


Asunto(s)
Avidina , Biotina , Calixarenos , Interacciones Hidrofóbicas e Hidrofílicas , Calixarenos/química , Biotina/química , Avidina/química , Avidina/metabolismo , Humanos , Propiedades de Superficie , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/metabolismo , Preparaciones de Acción Retardada/química , Fenoles/química
19.
Angew Chem Int Ed Engl ; 63(5): e202317402, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078790

RESUMEN

The pursuit of synthetic receptors with high binding affinities has long been a central focus in supramolecular chemistry, driven by their significant practical relevance in various fields. Despite the numerous synthetic receptors that have been developed, most exhibit binding affinities in the micromolar range or lower. Only a few exceptional receptors achieve binding affinities exceeding 109  M-1 , and their substrate scopes remain rather limited. In this context, we introduce SC[5]A, a conjugated corral-shaped macrocycle functionalized with ten sulfate groups. Owing to its deep one-dimensional confined hydrophobic cavity and multiple sulfate groups, SC[5]A displays an extraordinarily high binding strength of up to 1011  M-1 towards several size-matched, rod-shaped organic dications in water. Besides, its conformation exhibits good adaptability, allowing it to encapsulate a wide range of other guests with diverse molecular sizes, shapes, and functionalities, exhibiting relatively strong affinities (Ka =106 -108  M-1 ). Additionally, we've explored the preliminary application of SC[5]A in alleviating blood coagulation induced by hexadimethrine bromide in vitro and in vivo. Therefore, the combination of ultrahigh binding affinities (towards complementary guests) and adaptive recognition capability (towards a wide range of functional guests) of SC[5]A positions it as exceptionally valuable for numerous practical applications.

20.
Plant Mol Biol ; 113(1-3): 75-88, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37606746

RESUMEN

Three members of the Arabidopsis AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) transcription factor family, AIL5/PLT5, AIL6/PLT3, and AIL7/PLT7, exhibit partially overlapping roles with AINTEGUMENTA (ANT) during flower development. Loss of ANT function alone results in smaller floral organs and female sterility indicating that some ANT functions cannot be provided by these related transcription factors. Previously, we showed that expression of AIL6 at the same levels and spatial pattern as ANT could largely rescue the defects of ant mutants. This suggested that the functional differences between ANT and AIL6 were primarily a consequence of expression differences. Here, we investigated the functional differences between ANT and both AIL5 and AIL7 by expressing these two AILs under the control of the ANT promoter. We found that only ANT:gAIL5 lines with much higher amounts of AIL5 mRNA as compared with ANT could compensate for loss of ANT function. ANT:gAIL7 lines with AIL7 mRNA levels similar to those of ANT were able to rescue some but not all aspects of the ant mutant phenotype. Thus, expression differences alone cannot explain the functional differences between ANT and these two related proteins. Studies in yeast show that AIL5 and AIL7 have lower transcriptional activation activities as compared with ANT and AIL6 when bound to the consensus ANT DNA binding site. Our results suggest that differences in both expression and protein activity contribute to the functional specificity of ANT compared with AIL5 and AIL7.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores , Regulación de la Expresión Génica de las Plantas , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA