Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 33(10): 6486-6493, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36587299

RESUMEN

Humans excel at constructing mental representations of speech streams in the absence of external auditory input: the internal experience of speech imagery. Elucidating the neural processes underlying speech imagery is critical to understanding this higher-order brain function in humans. Here, using functional magnetic resonance imaging, we investigated the shared and distinct neural correlates of imagined and perceived speech by asking participants to listen to poems articulated by a male voice (perception condition) and to imagine hearing poems spoken by that same voice (imagery condition). We found that compared to baseline, speech imagery and perception activated overlapping brain regions, including the bilateral superior temporal gyri and supplementary motor areas. The left inferior frontal gyrus was more strongly activated by speech imagery than by speech perception, suggesting functional specialization for generating speech imagery. Although more research with a larger sample size and a direct behavioral indicator is needed to clarify the neural systems underlying the construction of complex speech imagery, this study provides valuable insights into the neural mechanisms of the closely associated but functionally distinct processes of speech imagery and perception.


Asunto(s)
Percepción del Habla , Habla , Humanos , Masculino , Mapeo Encefálico , Imaginación , Percepción Auditiva , Imagen por Resonancia Magnética
2.
Cereb Cortex ; 33(11): 6803-6817, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36657772

RESUMEN

Individualized cortical network topography (ICNT) varies between people and exhibits great variability in the association networks in the human brain. However, these findings were mainly discovered in Western populations. It remains unclear whether and how ICNT is shaped by the non-Western populations. Here, we leveraged a multisession hierarchical Bayesian model to define individualized functional networks in White American and Han Chinese populations with data from both US and Chinese Human Connectome Projects. We found that both the size and spatial topography of individualized functional networks differed between White American and Han Chinese groups, especially in the heteromodal association cortex (including the ventral attention, control, language, dorsal attention, and default mode networks). Employing a support vector machine, we then demonstrated that ethnicity-related ICNT diversity can be used to identify an individual's ethnicity with high accuracy (74%, pperm < 0.0001), with heteromodal networks contributing most to the classification. This finding was further validated through mass-univariate analyses with generalized additive models. Moreover, we reveal that the spatial heterogeneity of ethnic diversity in ICNT correlated with fundamental properties of cortical organization, including evolutionary cortical expansion, brain myelination, and cerebral blood flow. Altogether, this case study highlights a need for more globally diverse and publicly available neuroimaging datasets.


Asunto(s)
Conectoma , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Teorema de Bayes , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neuroimagen , Conectoma/métodos , Red Nerviosa/fisiología
3.
Cereb Cortex ; 30(5): 3198-3208, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31814022

RESUMEN

The spatial topological properties of cortical regions vary across individuals. Connectivity-based functional and anatomical cortical mapping in individuals will facilitate research on structure-function relationships. However, individual-specific cortical topographic properties derived from anatomical connectivity are less explored than those based on functional connectivity. We aimed to develop a novel individualized anatomical connectivity-based parcellation framework and investigate individual differences in spatial topographic features of cortical regions using diffusion magnetic resonance imaging (dMRI) tractography. Using a high-quality, repeated-session dMRI dataset (42 subjects, 2 sessions per subject), cortical parcels were derived through in vivo anatomical connectivity-based parcellation. These individual-specific parcels demonstrated good within-individual reproducibility and reflected interindividual differences in anatomical brain organization. Connectivity in these individual-specific parcels was significantly more homogeneous than that based on the group atlas. We found that the position, size, and topography of these anatomical parcels were highly variable across individuals and demonstrated nonredundant information about individual differences. Finally, we found that intersubject variability in anatomical connectivity was correlated with the diversity of anatomical connectivity patterns. Overall, we identified cortical parcels that show homogeneous anatomical connectivity patterns. These parcels displayed marked intersubject spatial variability, which may be used in future functional studies to reveal structure-function relationships in the human brain.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/diagnóstico por imagen , Conectoma , Imagen de Difusión por Resonancia Magnética , Adulto , Variación Biológica Individual , Corteza Cerebral/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Reproducibilidad de los Resultados , Adulto Joven
4.
Neuroimage ; 210: 116573, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31968232

RESUMEN

A connection between the subthalamic nucleus (STN) and the cerebellum which has been shown to exist in non-human primates, was recently identified in humans. However, its anatomical features, network properties and function have yet to be elucidated in humans. In the present study, we quantified the STN-cerebellum pathway in humans and explored its function based on structural observations. Anatomical features and asymmetry index (AI) were explored using high definition fiber tractography data of 30 individuals from the Massachusetts General Hospital - Human Connectome Project adult diffusion database. Pearson's correlation analysis was performed to determine the interrelationship between the subdivisions of the STN-cerebellum and the global cortical-STN connections. The pathway was visualized bilaterally in all the subjects. Typically, after setting out from the STN, the STN-cerebellum projections incorporated into the nearby corticopontine tracts, passing through the cerebral peduncle, mediated by the pontine nucleus and then connecting in two opposite directions to join the bilateral middle cerebellar peduncle. On the group averaged level, 78.03% and 62.54% of fibers from the right and left STN respectively, distributed to Crus I in the cerebellum, part of the remaining fibers projected to Crus II, with most of the fibers crossing contralaterally. According to the AI evaluation, 60% of the participants were right STN dominant, 23% were left STN dominant, and 17% were relatively symmetric. Pearson's correlation analysis further indicated that the number of pathways from mesial Brodmann area 8 to the STN (hyperdirect pathway associated with decision making) was positively correlated with the number of fibers from the right STN to Crus I. The insertion and termination, the right-side dominance, and the positive correlation with the hyperdirect pathway all suggest that the STN-cerebellum pathway might be involved in decision-making processes.


Asunto(s)
Cerebelo/anatomía & histología , Toma de Decisiones , Imagen de Difusión Tensora , Lateralidad Funcional , Red Nerviosa/anatomía & histología , Corteza Prefrontal/anatomía & histología , Núcleo Subtalámico/anatomía & histología , Adulto , Cerebelo/diagnóstico por imagen , Toma de Decisiones/fisiología , Lateralidad Funcional/fisiología , Humanos , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Núcleo Subtalámico/diagnóstico por imagen
5.
Neuroimage ; 206: 116318, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31689538

RESUMEN

Spatial normalization or deformation to a standard brain template is routinely used as a key module in various pipelines for the processing of magnetic resonance imaging (MRI) data. Brain templates are often constructed using MRI data from a limited number of subjects. Individual brains show significant variabilities in their morphology; thus, sample sizes and population differences are two key factors that influence brain template construction. To address these influences, we employed two independent groups from the Human Connectome Project (HCP) and the Chinese Human Connectome Project (CHCP) to quantify the impacts of sample sizes and population on brain template construction. We first assessed the effect of sample size on the construction of volumetric brain templates using data subsets from the HCP and CHCP datasets. We applied a voxel-wise index of the deformation variability and a logarithmically transformed Jacobian determinant to quantify the variability associated with the template construction and modeled the brain template variability as a power function of the sample size. At the system level, the frontoparietal control network and dorsal attention network demonstrated higher deformation variability and logged Jacobian determinants, whereas other primary networks showed lower variability. To investigate the population differences, we constructed Caucasian and Chinese standard brain atlases (namely, US200 and CN200). The two demographically matched templates, particularly the language-related areas, exhibited dramatic bilaterally in supramarginal gyri and inferior frontal gyri differences in their deformation variability and logged Jacobian determinant. Using independent data from the HCP and CHCP, we examined the segmentation and registration accuracy and observed significant reduction in the performance of the brain segmentation and registration when the population-mismatched templates were used in the spatial normalization. Our findings provide evidence to support the use of population-matched templates in human brain mapping studies. The US200 and CN200 templates have been released on the Neuroimage Informatics Tools and Resources Clearinghouse (NITRC) website (https://www.nitrc.org/projects/us200_cn200/).


Asunto(s)
Variación Biológica Poblacional , Encéfalo/diagnóstico por imagen , Conectoma , Tamaño de la Muestra , Adolescente , Adulto , Pueblo Asiatico , Mapeo Encefálico , China , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Estados Unidos , Población Blanca , Adulto Joven
6.
Hum Brain Mapp ; 41(9): 2495-2513, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32141680

RESUMEN

Cortical surface templates are an important standardized coordinate frame for cortical structure and function analysis in magnetic resonance (MR) imaging studies. The widely used adult cortical surface templates (e.g., fsaverage, Conte69, and the HCP-MMP atlas) are based on the Caucasian population. Neuroanatomical differences related to environmental and genetic factors between Chinese and Caucasian populations make these templates unideal for analysis of the cortex in the Chinese population. We used a multimodal surface matching algorithm in an iterative procedure to create Chinese (sCN200) and Caucasian (sUS200) cortical surface atlases based on 200 demographically matched high-quality T1- and T2-weighted (T1w and T2w, respectively) MR images from the Chinese Human Connectome Project (CHCP) and the Human Connectome Project (HCP), respectively. Templates for anatomical cortical surfaces (white matter, pial, midthickness) and cortical feature maps of sulcal depth, curvature, thickness, T1w/T2w myelin, and cortical labels were generated. Using independent subsets from the CHCP and the HCP, we quantified the accuracy of cortical registration when using population-matched and mismatched atlases. The performance of the cortical registration and accuracy of curvature alignment when using population-matched atlases was significantly improved, thereby demonstrating the importance of using the sCN200 cortical surface atlas for Chinese adult population studies. Finally, we analyzed female and male cortical differences within the Chinese and Caucasian populations. We identified significant between-sex differences in cortical curvature, sulcal depth, thickness, and T1w/T2w myelin maps in the frontal, temporal, parietal, occipital, and insular lobes as well as the cingulate cortices.


Asunto(s)
Algoritmos , Atlas como Asunto , Corteza Cerebral , Imagen por Resonancia Magnética , Neuroimagen , Caracteres Sexuales , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Corteza Cerebral/anatomía & histología , Corteza Cerebral/diagnóstico por imagen , China , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Población Blanca , Pueblo Asiatico
7.
Hum Brain Mapp ; 41(8): 2160-2172, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961469

RESUMEN

The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential substrates for cognitive processes. Understanding how the dynamic organization of brain functional networks on a subsecond level varies across individuals is, therefore, of great interest for personalized neuroscience. However, it remains unclear whether features of such rapid network organization are reliably unique and stable in single subjects and, therefore, can be used in characterizing individual networks. Here, we used two sets of 5-min magnetoencephalography (MEG) resting data from 39 healthy subjects over two consecutive days and modeled the spontaneous brain activity as recurring networks fast shifting between each other in a coordinated manner. MEG cortical maps were obtained through source reconstruction using the beamformer method and subjects' temporal structure of recurring networks was obtained via the Hidden Markov Model. Individual organization of dynamic brain activity was quantified with the features of the network-switching pattern (i.e., transition probability and mean interval time) and the time-allocation mode (i.e., fractional occupancy and mean lifetime). Using these features, we were able to identify subjects from the group with significant accuracies (~40% on average in 0.5-48 Hz). Notably, the default mode network displayed a distinguishable pattern, being the least frequently visited network with the longest duration for each visit. Together, we provide initial evidence suggesting that the rapid dynamic temporal organization of brain networks achieved in electrophysiology is intrinsic and subject specific.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma , Red en Modo Predeterminado/fisiología , Magnetoencefalografía , Red Nerviosa/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Conectoma/métodos , Red en Modo Predeterminado/diagnóstico por imagen , Femenino , Humanos , Magnetoencefalografía/métodos , Masculino , Cadenas de Markov , Red Nerviosa/diagnóstico por imagen , Factores de Tiempo , Adulto Joven
8.
Nat Neurosci ; 26(1): 163-172, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36536245

RESUMEN

Cultural differences and biological diversity play important roles in shaping human brain structure and function. To date, most large-scale multimodal neuroimaging datasets have been obtained primarily from people living in Western countries, omitting the crucial contrast with populations living in other regions. The Chinese Human Connectome Project (CHCP) aims to address these resource and knowledge gaps by acquiring imaging, genetic and behavioral data from a large sample of participants living in an Eastern culture. The CHCP collected multimodal neuroimaging data from healthy Chinese adults using a protocol comparable to that of the Human Connectome Project. Comparisons between the CHCP and Human Connectome Project revealed both commonalities and distinctions in brain structure, function and connectivity. The corresponding large-scale brain parcellations were highly reproducible across the two datasets, with the language processing task showing the largest differences. The CHCP dataset is publicly available in an effort to facilitate transcultural and cross-ethnic brain-mind studies.


Asunto(s)
Conectoma , Adulto , Humanos , Conectoma/métodos , Pueblos del Este de Asia , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Neuroimagen , Lenguaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA