Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(3): 4387-4399, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38297641

RESUMEN

Tomography plays an important role in characterizing the three-dimensional structure of samples within specialized scenarios. In the paper, a masked attention network is presented to eliminate interference from different layers of the sample, substantially enhancing the resolution for photon-level single-pixel tomographic imaging. The simulation and experimental results have demonstrated that the axial resolution and lateral resolution of the imaging system can be improved by about 3 and 2 times respectively, with a sampling rate of 3.0 %. The scheme is expected to be seamlessly integrated into various tomography systems, which is conducive to promoting the tomographic imaging for biology, medicine, and materials science.

2.
Nano Lett ; 21(3): 1477-1483, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33507086

RESUMEN

Massive magical phenomena in nature are closely related to quantum effects at the microscopic scale. However, the lack of straightforward methods to observe the quantum coherent dynamics in integrated biological systems limits the study of essential biological mechanisms. In this work, we developed a single-molecule coherent modulation (SMCM) microscopy by combining the superior features of single-molecule microscopy with ultrafast spectroscopy. By introducing the modem technology and defining the coherent visibility, we realized visualization and real-time observation of the decoherence process of a single molecule influenced by the microenvironment for the first time. In particular, we applied this technique to observe the quantum coherent properties of the entire chlorella cells and found the correlation between the coherent visibility and metabolic activities, which may have potential applications in molecular diagnostics and precision medicine.


Asunto(s)
Chlorella , Imagen Individual de Molécula , Microscopía , Nanotecnología , Análisis Espectral
3.
Opt Express ; 29(15): 22855-22867, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614564

RESUMEN

Au nanoparticles are attractive contrast agents for noninvasive living tissue imaging with deep penetration because of their strong two-photon photoluminescence (TPPL) intensity and excellent biocompatibility. However, the inevitable phototoxicity and huge auto-fluorescence are consistently associated with laser excitation. Therefore, enhancement of TPPL intensity and suppression of backgrounds are always highly desired under the demand of reducing excitation powers. In this work, we develop a double-pulse TPPL (DP-TPPL) scheme with controlled phase differences (Δφ) between the double pulses to significantly improve the signal-to-noise ratio (SNR) of TPPL imaging. Under the modulated phase (Δφ periodically varying between 0-2π), our results show that SNR can be improved from 4.3 to 1715, with an enhancement of up to 400 folds at the integration of 50 ms. More importantly, this enhancement can be unlimitedly lifted by increasing the number of photons or integration times in principle. Further boosting has been achieved by reducing the magnitude of background noises; subsequently, SNR is improved by more than 104 times. Our schemes offer great potential for reducing phototoxicity and extracting extremely weak signals from huge backgrounds and open up a new possibility for a rapid, flexible, and reliable medical diagnosis by TPPL imaging with diminished laser powers.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Sondas Moleculares/química , Imagen Individual de Molécula/métodos , Fluorescencia , Rayos Láser
4.
Phys Rev Lett ; 127(7): 073902, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34459625

RESUMEN

The interaction between light and metal nanoparticles enables investigations of microscopic phenomena on nanometer length and ultrashort timescales, benefiting from strong confinement and enhancement of the optical field. However, the ultrafast dynamics of these nanoparticles are primarily investigated by multiphoton photoluminescence on picoseconds or photoemission on femtoseconds independently. Here, we presented two-photon photoluminescence (TPPL) measurements on individual Au nanobipyramids (AuNP) to reveal their ultrafast dynamics by double-pulse excitation on a global timescale ranging from subfemtosecond to tens of picoseconds. Two orders of magnitude photoluminescence enhancement, namely, coherent interference fringes, has been demonstrated. Power-dependent measurements uncovered the transform of the nonlinearity from 1 to 2 when the interpulse delay varied from tens of femtoseconds to tens of picoseconds. We proved that the real intermediate state plays a critical role in the observed phenomena, supported by numerical simulations with a three-state model. Our results provide insight into the role of intermediate states in the ultrafast dynamics of noble metal nanoparticles. The presence of the intermediate states in AuNP and the coherent control of state populations offer interesting perspectives for imaging, sensing, nanophotonics, and in particular, for preparing macroscopic superposition states at room temperature and low-power superresolution stimulated emission depletion microscopy.

5.
J Chem Phys ; 155(24): 244301, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34972379

RESUMEN

Photoblinking and photobleaching are commonly encountered problems for single-photon sources. Numerous methods have been devised to suppress these two impediments; however, either the preparation procedures or the operating conditions are relatively harsh, making them difficult to apply to practical applications. Here, we reported giant suppression of both photoblinking and photobleaching of a single fluorescent molecule, terrylene, via the utilization of hexagonal boron nitride (h-BN) flakes as substrates. Experimentally, a much-prolonged survival time of terrylene has been determined, which can have a photostable emission over 2 h at room temperature under ambient atmospheres. Compared with single molecules on a SiO2/Si substrate or glass coverslip, a more than 100-fold increase in the total number of photons collected from each terrylene on h-BN flakes has been demonstrated. We also proved that the photostability of terrylene molecules can be well maintained for more than 6 months even under ambient conditions without any further protection. Our results demonstrate that the utilization of h-BN flakes to suppress photoblinking and photobleaching of fluorescent molecules has promising applications in the production of high-quality single-photon sources at room temperature.

6.
Opt Express ; 27(21): 29949-29961, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31684250

RESUMEN

Atomically thin layer transition metal dichalcogenides have been intensively investigated for their rich optical properties and potential applications on nano-electronics. In this work, we study the incoherent phonon and exciton population dynamics in monolayer WS2 by time-resolved Resonance Raman scattering spectroscopy. Upon excitation of the exciton transition, both Stokes and anti-Stokes scattering strength of the optical and the longitudinal acoustic two phonon modes exhibit large reduction. Based on the assumption of quasi-equilibrium distribution, the hidden phonon population dynamics is retrieved, which shows an instant build-up and a relaxation lifetime of ∼4 ps at the exciton density ∼1012cm-2. A phonon temperature rises of ∼20 K was identified due to the exciton excitation and relaxation. The exciton relaxation dynamics extracted from the transient vibrational Raman response shows strong excitation density dependence, signaling an important bi-molecular contribution to the decay. These results provide significant knowledge on the thermal dynamics after optical excitation, enhance the understanding of the fundamental exciton dynamics in two-dimensional transition metal materials, and demonstrate that time-resolved Resonance Raman scattering spectroscopy is a powerful method for exploring quasi-particle dynamics in optical materials.

7.
Nanoscale ; 13(19): 8966-8975, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33970179

RESUMEN

Monolayer transition metal dichalcogenides, manifesting strong spin-orbit coupling combined with broken inversion symmetry, lead to coupling of spin and valley degrees of freedom. These unique features make them highly interesting for potential spintronic and valleytronic applications. However, engineering spin-orbit coupling at room temperature as demanded after device fabrication is still a great challenge for their practical applications. Here we reversibly engineer the spin-orbit coupling of monolayer MoS2 by laser irradiation under controlled gas environments, where the spin-orbit splitting has been effectively regulated within 140 meV to 200 meV. Furthermore, the photoluminescence intensity of the B exciton can be reversibly manipulated over 2 orders of magnitude. We attribute the engineering of spin-orbit splitting to the reduction of binding energy combined with band renormalization, originating from the enhanced absorption coefficient of monolayer MoS2 under inert gases and subsequently the significantly boosted carrier concentrations. Reflectance contrast spectra during the engineering stages provide unambiguous proof to support our interpretation. Our approach offers a new avenue to actively control the spin-orbit splitting in transition metal dichalcogenide materials at room temperature and paves the way for designing innovative spintronic devices.

8.
ACS Nano ; 15(8): 12966-12974, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34314151

RESUMEN

van der Waals (vdW) heterostructures of transition metal dichalcogenides (TMDCs) provide an excellent paradigm for next-generation electronic and optoelectronic applications. However, the reproducible fabrications of vdW heterostructure devices and the boosting of practical applications are severely hindered by their unstable performance, due to the lack of criteria to assess the interlayer coupling in heterostructures. Here we propose a physical model involving ultrafast electron transfer in the heterostructures and provide two criteria, η (the ratio of the transferred electrons to the total excited electrons) and ζ (the relative photoluminescence variation), to evaluate the interlayer coupling by considering the electron transfer in TMDC heterostructures and numerically simulating the corresponding rate equations. We have proved the effectiveness and robustness of two criteria by measuring the pump-probe photoluminescence intensity of monolayer WS2 in the WS2/WSe2 heterostructures. During thermal annealing of WS2/WSe2, ζ varies from negative to positive values and η changes between 0 and 4.5 × 10-3 as the coupling strength enhanced; both of them can well characterize the tuning of interlayer coupling. We also design a scheme to image the interlayer coupling by performing PL imaging at two time delays. Our scheme offers powerful criteria to assess the interlayer coupling in TMDC heterostructures, offering opportunities for the implementation of vdW heterostructures for broadband and high-performance electronic and optoelectronic applications.

9.
Nanomaterials (Basel) ; 10(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861767

RESUMEN

Monolayer transition metal dichalcogenides (TMDs) are direct gap semiconductors with promising applications in diverse optoelectronic devices. To improve devices' performance, recent investigations have been systematically focused on the tuning of their optical properties. However, an all-optical approach with the reversible feature is still a challenge. Here we demonstrate the tunability of the photoluminescence (PL) properties of monolayer WS2 via laser irradiation. The broad-range and continuous modulation of PL intensity, as well as the conversion between neutral and charged excitons have been readily and reversibly achieved by only switching the two laser power densities. We attribute the reversible manipulation to the laser-assisted adsorption and desorption of gas molecules, which will deplete or release free electrons from the surface of WS2 and thus modify its PL properties. This all-optical manipulation, with advantages of reversibility, quantitative control, and high spatial resolution, suggests promising applications of TMDs monolayers in optoelectronic and nanophotonic applications, such as erasable optical data storage, micropatterning, and display.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA