Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 132(18)2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31427428

RESUMEN

During mitosis, anaphase is triggered by anaphase-promoting complex (APC)-mediated destruction of securin and cyclin B1, which leads to inactivation of cyclin-dependent kinase 1 (Cdk1). By regulating APC activity, the mitotic spindle assembly checkpoint (SAC) therefore has robust control over anaphase timing to prevent chromosome mis-segregation. Mammalian oocytes are prone to aneuploidy, the reasons for which remain obscure. In mitosis, Cep55 is required post-anaphase for the final steps of cytokinesis. We found that Cep55-depleted mouse oocytes progress normally through early meiosis I, but that anaphase I fails as a result of persistent Cdk1 activity. Unexpectedly, Cdk1 inactivation was compromised following Cep55 depletion, despite on-time SAC silencing and intact APC-mediated proteolysis. We found that impaired Cdk1 inactivation was caused by inadequate inhibitory Cdk1 phosphorylation consequent upon failure to suppress Cdc25 phosphatase, identifying a proteolysis-independent step necessary for anaphase I. Thus, the SAC in oocytes does not exert exclusive control over anaphase I initiation, providing new insight into vulnerability to error.


Asunto(s)
Anafase/fisiología , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Meiosis/fisiología , Anafase/genética , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Femenino , Immunoblotting , Meiosis/genética , Ratones , Microscopía Confocal , Fosforilación , Proteínas Quinasas/metabolismo
2.
J Exp Clin Cancer Res ; 42(1): 90, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072858

RESUMEN

BACKGROUND: Despite overall improvement in breast cancer patient outcomes from earlier diagnosis and personalised treatment approaches, some patients continue to experience recurrence and incurable metastases. It is therefore imperative to understand the molecular changes that allow transition from a non-aggressive state to a more aggressive phenotype. This transition is governed by a number of factors. METHODS: As crosstalk with extracellular matrix (ECM) is critical for tumour cell growth and survival, we applied high throughput shRNA screening on a validated '3D on-top cellular assay' to identify novel growth suppressive mechanisms. RESULTS: A number of novel candidate genes were identified. We focused on COMMD3, a previously poorly characterised gene that suppressed invasive growth of ER + breast cancer cells in the cellular assay. Analysis of published expression data suggested that COMMD3 is normally expressed in the mammary ducts and lobules, that expression is lost in some tumours and that loss is associated with lower survival probability. We performed immunohistochemical analysis of an independent tumour cohort to investigate relationships between COMMD3 protein expression, phenotypic markers and disease-specific survival. This revealed an association between COMMD3 loss and shorter survival in hormone-dependent breast cancers and in particularly luminal-A-like tumours (ER+/Ki67-low; 10-year survival probability 0.83 vs. 0.73 for COMMD3-positive and -negative cases, respectively). Expression of COMMD3 in luminal-A-like tumours was directly associated with markers of luminal differentiation: c-KIT, ELF5, androgen receptor and tubule formation (the extent of normal glandular architecture; p < 0.05). Consistent with this, depletion of COMMD3 induced invasive spheroid growth in ER + breast cancer cell lines in vitro, while Commd3 depletion in the relatively indolent 4T07 TNBC mouse cell line promoted tumour expansion in syngeneic Balb/c hosts. Notably, RNA sequencing revealed a role for COMMD3 in copper signalling, via regulation of the Na+/K+-ATPase subunit, ATP1B1. Treatment of COMMD3-depleted cells with the copper chelator, tetrathiomolybdate, significantly reduced invasive spheroid growth via induction of apoptosis. CONCLUSION: Overall, we found that COMMD3 loss promoted aggressive behaviour in breast cancer cells.


Asunto(s)
Cobre , Neoplasias , Animales , Ratones , Diferenciación Celular/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA