Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 219: 239-251, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29751255

RESUMEN

During the restoration of degraded bogs and other peatlands, both habitat and functional recovery can be closely linked with nutrient cycling, which is reflected in pore- and surface-water chemistry. Several peatland restoration studies have shown that the time required for recovery of target conditions is slow (>10 years); for heavily-impacted, drained and afforested peatlands of northern Scotland, recovery time is unknown. We monitored pore- and surface-water chemistry across a chronosequence of formerly drained, afforested bog restoration sites spanning 0-17 years, using a space-for-time substitution, and compared them with open blanket bog control sites. Our aims were to measure rate of recovery towards bog conditions and to identify the best suite of water chemistry variables to indicate recovery. Our results show progress in recovery towards bog conditions over a 0-17 year period post-restoration. Elements scavenged by trees (Mg, Na, S) completely recovered within that period. Many water chemistry variables were affected by the restoration process itself, but recovered within 11 years, except ammonium (NH4+), Zn and dissolved organic carbon (DOC) which remained elevated (when compared to control bogs) 17 years post restoration. Other variables did not completely recover (water table depth (WTD), pH), exhibiting what we term "legacy" effects of drainage and afforestation. Excess N and a lowered WTD are likely to slow the recovery of bog vegetation including key bog plants such as Sphagnum mosses. Over 17 years, we measured near-complete recovery in the chemistry of surface-water and deep pore-water but limited progress in shallow pore-water. Our results suggest that at least >17 years are required for complete recovery of water chemistry to bog conditions. However, we expect that newer restoration methods including conifer harvesting (stem plus brash) and the blocking of plough furrows (to increase the WTD) are likely to accelerate the restoration process (albeit at greater cost); this should be evaluated in future studies. We conclude that monitoring pore- and surface-water chemistry is useful in terms of indicating recovery towards bog conditions and we recommend monitoring WTD, pH, conductivity, Ca, NH4+, phosphate (PO43-), K, DOC, Al and Zn as key variables.


Asunto(s)
Agua Subterránea , Humedales , Carbono , Escocia , Agua
2.
Sci Total Environ ; 742: 140594, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32640388

RESUMEN

Peatland restoration is undertaken to bring back key peatland ecosystem services, including carbon storage. In the case of drained, afforested blanket peatlands, restoration through drain blocking and tree removal may impact upon aquatic carbon concentrations and export, which needs to be accounted for when considering the carbon benefits of restoration. This study investigated concentrations and export of aquatic carbon from a drained, afforested blanket bog catchment, where 12% of the catchment underwent drain blocking and conifer removal (termed 'forest-to-bog' restoration), and from two control catchments: one in open bog and one that remained afforested. Using a before-after-control-impact (BACI) design, we found no significant increases in concentrations or export of aquatic carbon (DOC, POC or DIC) in the first year following forest-to-bog restoration (i.e. across the whole post-restoration period). However, increased DOC concentrations were observed in the first summer (2015) post-restoration, and seasonally increased DOC export was noted during storm events in the autumn of the same year. The lack of significant effects of forest-to-bog restoration on aquatic carbon export may be a consequence of the small proportion of the catchment (12%) undergoing management. In terms of management, the removal of more of the forestry residues (i.e., brash) may help to mitigate effects on aquatic carbon, by removing a potential DOC and POC source. Restoring small areas at a time (≤12%) should result in minimal aquatic carbon export issues, in contexts similar to the current study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA