Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Neurosci ; : 103953, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39013481

RESUMEN

Hypertension-induced brain renin-angiotensin system (RAS) activation and neuroinflammation are hallmark neuropathological features of neurodegenerative diseases. Previous studies from our lab have shown that inhibition of ACE/Ang II/AT1R axis (by AT1R blockers or ACE inhibitors) reduced neuroinflammation and accompanied neurodegeneration via up-regulating adult hippocampal neurogenesis. Apart from this conventional axis, another axis of RAS also exists i.e., ACE2/Ang (1-7)/MasR axis, reported as an anti-hypertensive and anti-inflammatory. However, the role of this axis has not been explored in hypertension-induced glial activation and hippocampal neurogenesis in rat models of hypertension. Hence, in the present study, we examined the effect of ACE2 activator, Diminazene aceturate (DIZE) at 2 different doses of 10 mg/kg (non-antihypertensive) and 15 mg/kg (antihypertensive dose) in renovascular hypertensive rats to explore whether their effect on glial activation, neuroinflammation, and neurogenesis is either influenced by blood-pressure. The results of our study revealed that hypertension induced significant glial activation (astrocyte and microglial), neuroinflammation, and impaired hippocampal neurogenesis. However, ACE2 activation by DIZE, even at the low dose prevented these hypertension-induced changes in the brain. Mechanistically, ACE2 activation inhibited Ang II levels, TRAF6-NFκB mediated inflammatory signaling, NOX4-mediated ROS generation, and mitochondrial dysfunction by upregulating ACE2/Ang (1-7)/MasR signaling. Moreover, DIZE-induced activation of the ACE2/Ang (1-7)/MasR axis upregulated Wnt/ß-catenin signaling, promoting hippocampal neurogenesis during the hypertensive state. Therefore, our study demonstrates that ACE2 activation can effectively prevent glial activation and enhance hippocampal neurogenesis in hypertensive conditions, regardless of its blood pressure-lowering effects.

2.
Basic Res Cardiol ; 118(1): 46, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923788

RESUMEN

Regulation of RNA stability and translation by RNA-binding proteins (RBPs) is a crucial process altering gene expression. Musashi family of RBPs comprising Msi1 and Msi2 is known to control RNA stability and translation. However, despite the presence of MSI2 in the heart, its function remains largely unknown. Here, we aim to explore the cardiac functions of MSI2. We confirmed the presence of MSI2 in the adult mouse, rat heart, and neonatal rat cardiomyocytes. Furthermore, Msi2 was significantly enriched in the heart cardiomyocyte fraction. Next, using RNA-seq data and isoform-specific PCR primers, we identified Msi2 isoforms 1, 4, and 5, and two novel putative isoforms labeled as Msi2 6 and 7 to be expressed in the heart. Overexpression of Msi2 isoforms led to cardiac hypertrophy in cultured cardiomyocytes. Additionally, Msi2 exhibited a significant increase in a pressure-overload model of cardiac hypertrophy. We selected isoforms 4 and 7 to validate the hypertrophic effects due to their unique alternative splicing patterns. AAV9-mediated overexpression of Msi2 isoforms 4 and 7 in murine hearts led to cardiac hypertrophy, dilation, heart failure, and eventually early death, confirming a pathological function for Msi2. Using global proteomics, gene ontology, transmission electron microscopy, seahorse, and transmembrane potential measurement assays, increased MSI2 was found to cause mitochondrial dysfunction in the heart. Mechanistically, we identified Cluh and Smyd1 as direct downstream targets of Msi2. Overexpression of Cluh and Smyd1 inhibited Msi2-induced cardiac malfunction and mitochondrial dysfunction. Collectively, we show that Msi2 induces hypertrophy, mitochondrial dysfunction, and heart failure.


Asunto(s)
Insuficiencia Cardíaca , Animales , Ratones , Ratas , Cardiomegalia , Proteínas de Unión al ADN/metabolismo , Insuficiencia Cardíaca/metabolismo , Mitocondrias/metabolismo , Proteínas Musculares/genética , Miocitos Cardíacos/metabolismo , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , ARN Mensajero/metabolismo , ARN Mensajero/farmacología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/farmacología
3.
Pulm Pharmacol Ther ; 80: 102200, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36842770

RESUMEN

Endothelial dysfunction is critical in the pulmonary vasculature during pulmonary hypertension (PH). Moreover, in PH, increased inflammation and oxidative/nitrosative stress cause DNA damage, activating poly (ADP-ribose) polymerase-1 (PARP-1). Meloche et al. (2014) and our previous research have shown that inhibiting PARP-1 is protective in PH and associated RV hypertrophy. However, the role of PARP-1 in pulmonary arterial endothelial dysfunction has not been explored completely. Therefore, the current study aims to investigate the involvement of PARP-1 in endothelial dysfunction associated with PH. Hypoxia (1% O2) was used to induce a PH-like phenotype in human pulmonary artery endothelial cells (HPAECs), and PARP-1 inhibition was achieved via siRNA (60 nM). For the in vivo study, male Sprague Dawley rats were administered monocrotaline (MCT; 60 mg/kg, SC, once) to induce PH, and 1, 5-isoquinolinediol (ISO; 3 mg/kg) was administered daily intraperitoneally to inhibit PARP-1. PARP-1 inhibition decreased proliferation and inflammation, as well as improved mitochondrial dysfunction in hypoxic HPAECs. Furthermore, PARP-1 inhibition also promoted apoptosis by increasing DNA damage in hypoxic HPAECs. In addition, inhibition of PARP-1 reduced cell migration, VEGF expression, and tubule formation in hypoxic HPAECs. In in vivo studies, PARP-1 inhibition by ISO significantly decreased the RVP and RVH as well as improved endothelial function by increasing the pulmonary vascular reactivity and expression of p-eNOS in MCT-treated rats.


Asunto(s)
Hipertensión Pulmonar , Ratas , Masculino , Humanos , Animales , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Ratas Sprague-Dawley , Células Endoteliales/metabolismo
4.
Pulm Pharmacol Ther ; 76: 102156, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030026

RESUMEN

Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) and endothelial cells (PAECs), inflammation, as well as mitochondrial and metabolic dysregulation, contributes to the development of pulmonary hypertension (PH). Pyrroloquinoline quinone (PQQ), a potent natural antioxidant with anti-diabetic, neuroprotective, and cardioprotective properties, is known to promote mitochondrial biogenesis. However, its effect on cellular proliferation, apoptosis resistance, mitochondrial and metabolic alterations associated with PH remains unexplored. The current study was designed to investigate the effect of PQQ in the treatment of PH. Human pulmonary artery smooth muscle cells (HPASMCs), endothelial cells (PAECs), and primary cultured cardiomyocytes were subjected to hypoxia to induce PH-like phenotype. Furthermore, Sprague Dawley (SD) rats injected with monocrotaline (MCT) (60 mg/kg, SC, once) progressively developed pulmonary hypertension. PQQ treatment (2 mg/kg, PO, for 35 days) attenuated cellular proliferation and promoted apoptosis via a mitochondrial-dependent pathway. Furthermore, PQQ treatment in HPASMCs prevented mitochondrial and metabolic dysfunctions, improved mitochondrial bioenergetics while preserving respiratory complexes, and reduced insulin resistance. In addition, PQQ treatment (preventive and curative) significantly attenuated the increase in right ventricle pressure and hypertrophy as well as reduced endothelial dysfunction and pulmonary artery remodeling in MCT-treated rats. PQQ also prevented cardiac fibrosis and improved cardiac functions as well as reduced inflammation in MCT-treated rats. Altogether, the above findings demonstrate that PQQ can attenuate mitochondrial as well as metabolic abnormalities in PASMCs and also prevent the development of PH in MCT treated rats; hence PQQ may act as a potential therapeutic agent for the treatment of PH.


Asunto(s)
Hipertensión Pulmonar , Animales , Células Endoteliales , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Monocrotalina , Cofactor PQQ/metabolismo , Cofactor PQQ/farmacología , Cofactor PQQ/uso terapéutico , Arteria Pulmonar , Ratas , Ratas Sprague-Dawley
5.
Biomarkers ; 27(8): 743-752, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35896310

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is an age-related disease, and its progression is accompanied by hyperglycaemia, cardiac dysfunction, and myocardial structural and functional abnormalities. Cissus quadrangularis, a traditional medicinal plant, contains polyphenols, flavonoids, phytosterols, carbohydrates and ascorbic acid. It is used to treat osteoporosis, asthma, haemorrhoids and menstrual disorders.Objective: In the current research, we have investigated the effect of ethanolic extract of C. quadrangularis (EECQ) against a high-fat diet (HFD)/streptozotocin-induced DCM by estimating cardiac biomarkers, inflammatory markers and Reactive oxygen species (ROS) production. MATERIAL AND METHODS: Rats were fed with an HFD for 12 weeks, followed by single-shot low-dose streptozotocin (35 mg/kg; i.p.). The treatment was performed by EECQ (200 mg/kg/day, orally) for six weeks. RESULTS: The extract EECQ improves glucose, insulin tolerance tests and hypercholesteremia. DCM is characterized by cardiac dysfunction, cardiac biomarkers CKMB and LDH, which were attenuated by the EECQ treatment. The hypertrophic biomarker ANP, BNP expression and cardiomyocyte surface area were decreased by EECQ. Moreover, EECQ also alleviated the biomarkers Angiotensin II and renin level. EECQ also reduced oxidative stress, ROS production and cardiac inflammation. CONCLUSIONS: Thus, these findings suggested that EECQ could be used as a possible therapeutic regiment to treat DCM.


Cissus quadrangularis ameliorates hyperglycaemia, hyperinsulinemia and hyperlipidaemia.Cissus quadrangularis mitigates cardiac dysfunction.Cissus quadrangularis decreases RAAS activation, thereby down-regulates ANP, BNP expression.Cissus quadrangularis alleviates ROS propagated oxidative stress and apoptosis.


Asunto(s)
Cissus , Diabetes Mellitus , Cardiomiopatías Diabéticas , Ratas , Animales , Cissus/química , Estreptozocina/farmacología , Cardiomiopatías Diabéticas/tratamiento farmacológico , Especies Reactivas de Oxígeno , Sistema Renina-Angiotensina , Extractos Vegetales/farmacología , Extractos Vegetales/química , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Etanol/farmacología , Diabetes Mellitus/tratamiento farmacológico
6.
Clin Exp Hypertens ; 44(1): 63-71, 2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-34648416

RESUMEN

BACKGROUND: Endothelial dysfunction is related to the reduced bioavailability of nitric oxide (NO) and plays a significant role in developing hypertension. The intake of a diet rich in antioxidants decreases the threat of hypertension. Cissus quadrangularis possesses antioxidant, anti-inflammatory, and hypocholesterolemic activities. However, to date, no studies have been performed to explore this plant's antihypertensive and vasorelaxant activity. Herein, we investigated the chronic effect of C. quadrangularis on blood pressure as well as vascular function in hypertensive rats. METHODS: Male spontaneously hypertensive rats (SHR) were randomly divided into two groups. Normotensive Wistar rats were taken as the control group. The treatment was done using ethanolic extract of C. quadrangularis (EECQ) at a dose of 200 mg/kg. RESULTS: The administration of EECQ for six weeks reduced the systolic blood pressure, mean arterial blood pressure, and heart rate. It also alleviated the cardiac and renal hypertrophy indices. Supplementation of EECQ improved the endothelium-dependent aortic vasodilation induced by acetylcholine. It restored the NO level and endothelial NO synthase expression in the aorta. Subsequently, the extract alleviates the oxidative stress and inflammatory markers in SHR rats. CONCLUSION: Thus, in the present study, the chronic treatment of EECQ to genetically hypertensive rats improved endothelium-dependent relaxation in addition to its antihypertensive effect by eNOS activation and inhibition of ROS production, inflammation.


Asunto(s)
Cissus , Hipertensión , Animales , Cissus/metabolismo , Endotelio Vascular/metabolismo , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Extractos Vegetales/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Ratas Wistar , Vasodilatación
7.
Regul Toxicol Pharmacol ; 123: 104960, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34022260

RESUMEN

Cassia occidentalis Linn (CO) is an annual/perennial plant having traditional uses in the treatments of ringworm, gastrointestinal ailments and piles, bone fracture, and wound healing. Previously, we confirmed the medicinal use of the stem extract (ethanolic) of CO (henceforth CSE) in fracture healing at 250 mg/kg dose in rats and described an osteogenic mode of action of four phytochemicals present in CSE. Here we studied CSE's preclinical safety and toxicity. CSE prepared as per regulations of Current Good Manufacturing Practice for human pharmaceuticals/phytopharmaceuticals and all studies were performed in rodents in a GLP-accredited facility. In acute dose toxicity as per New Drug and Clinical Trial Rules, 2019 (prior name schedule Y), in rats and mice and ten-day dose range-finding study in rats, CSE showed no mortality and no gross abnormality at 2500 mg/kg dose. Safety Pharmacology showed no adverse effect on central nervous system, cardiovascular system, and respiratory system at 2500 mg/kg dose. CSE was not mutagenic in the Ames test and did not cause clastogenicity assessed by in vivo bone marrow genotoxicity assay. By a sub chronic (90 days) repeated dose (as per OECD, 408 guideline) study in rats, the no-observed-adverse-effect-level was found to be 2500 mg/kg assessed by clinico-biochemistry and all organs histopathology. We conclude that CSE is safe up to 10X the dose required for its osteogenic effect.


Asunto(s)
Fitoquímicos/toxicidad , Extractos Vegetales/toxicidad , Senna , Animales , Etanol , Ratones , Nivel sin Efectos Adversos Observados , Ratas , Roedores , Pruebas de Toxicidad
8.
J Environ Manage ; 278(Pt 2): 111302, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33152547

RESUMEN

The water reservoirs are getting polluted due to increasing amounts of micropollutants such as pharmaceuticals, organic polymers and suspended solids. Powdered activated carbon (PAC) has been proved to be a promising solution for the purification of water without having harmful impacts on the environment. Parameters such as PAC dosing, wastewater hardness, the effect of coagulant and flocculant were evaluated in a batch scale study. These parameters were further applied on a pilot plant scale for the performance evaluation of PAC based removal of micropollutants concerning the contact time and PAC dosing with main focus on recirculation of PAC sludge. The obtained optimum dose was 10-20 mg/L providing 84.40-91.30% removal efficiency of suspended solid micropollutants (MPs) and this efficiency increased to 88.90-93.00% along with coagulant which further raised by the addition of polymer and recirculation process at batch scale. On pilot plant scale, the concentration in contact reactor and PAC removal effectiveness of dissolved air flotation, lamella separator and sedimentation tank were compared. Constant optimisation resulted in a concentration ranging from 2.70 to 3.40 g/L at dosing of PAC 10 mg/L, coagulant 2.00 mg/L and polymer 0.50 mg/L. PAC doses of 10-20 mg/L with 15-30 min contact time proved best for above 70-80% elimination. The recirculation system has also proved an efficient technique because the PAC's adsorption capacity was practically completely used. Small PAC dosages yielded high micropollutants elimination.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
9.
Exp Cell Res ; 383(2): 111569, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31465767

RESUMEN

Apart from pulmonary vascular resistance and right ventricle (RV) hypertrophy, metabolic dysfunction also plays a major role in pathophysiology of pulmonary hypertension (PH). Recently, we have shown that fatty acid synthase (FAS), an enzyme involved in de novo fatty acid synthesis, plays a pivotal role in PH as its inhibition was protective and decreased pulmonary vascular remodelling, RV pressure and hypertrophy and improved endothelial functions. However, the precise mechanism behind protective effect of FAS inhibition on right ventricle dysfunction associated with PH is not completely understood. Therefore, the present study delineated the mechanism of protective effect of FAS inhibition on RV dysfunction associated with PH. siRNA mediated inhibition of FAS reduced FAS expression, hypertrophy, inflammation, apoptosis, autophagy and improved the glucose oxidation, mitochondrial membrane potential and ATP level in hypoxic cardiomyocytes. In monocrotaline (MCT) treated rats, FAS inhibition by C75 (2 mg/kg, i.p., once a week from 21 to 35 days) decreased the expression and activity of FAS and palmitate level. C75 also improved cardiac functions and mitochondrial membrane potential leading to decreased apoptosis in RV of MCT treated rats. In conclusion, our study reveals that inhibition of FAS decreases RV hypertrophy and improves cardiac function associated with PH by perking up metabolic functions.


Asunto(s)
Acido Graso Sintasa Tipo I/fisiología , Hipertensión Pulmonar/genética , Hipertrofia Ventricular Derecha/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , Animales , Animales Recién Nacidos , Células Cultivadas , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/complicaciones , Hipertrofia Ventricular Derecha/patología , Masculino , Monocrotalina , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/genética
10.
Brain Behav Immun ; 59: 173-189, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27658543

RESUMEN

Studies have demonstrated separately that hypertension is associated with platelet activation in the periphery (resulting in accumulation and localized inflammatory response) and glial activation in the brain. We investigated the contribution of platelets in brain inflammation, particularly glial activation in vitro and in a rat model of hypertension. We found that HTN increased the expression of adhesion molecules like JAM-1, ICAM-1, and VCAM-1 on brain endothelium and resulted in the deposition of platelets in the brain. Platelet deposition in hypertensive rats was associated with augmented CD40 and CD40L and activation of astrocytes (GFAP expression) and microglia (Iba-1 expression) in the brain. Platelets isolated from hypertensive rats had significantly higher sCD40L levels and induced more prominent glial activation than platelets from normotensive rats. Activation of platelets with ADP induced sCD40L release and activation of astrocytes and microglia. Moreover, CD40L induced glial (astrocytes and microglia) activation, NFкB and MAPK inflammatory signaling, culminating in neuroinflammation and neuronal injury (increased apoptotic cells). Importantly, injection of ADP-activated platelets into normotensive rats strongly induced activation of astrocytes and microglia and increased plasma sCD40L levels compared with control platelets. On the contrary, inhibition of platelet activation by Clopidogrel or disruption of CD40 signaling prevented astrocyte and microglial activation and provided neuroprotection in both in vivo and in vitro conditions. Thus, we have identified platelet CD40L as a key inflammatory molecule for the induction of astrocyte and microglia activation, the major contributors to inflammation-mediated injury in the brain.


Asunto(s)
Astrocitos/inmunología , Plaquetas/química , Ligando de CD40/farmacología , Hipertensión/inmunología , Microglía/inmunología , Animales , Ligando de CD40/sangre , Proteínas de Unión al Calcio/biosíntesis , Proteínas de Unión al Calcio/genética , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Citocinas/metabolismo , Proteína Ácida Fibrilar de la Glía/biosíntesis , Hipertensión/sangre , Inflamación/patología , Activación de Macrófagos/efectos de los fármacos , Masculino , Microcirculación , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/inmunología , Ratas , Ratas Sprague-Dawley
11.
J Cardiovasc Pharmacol ; 70(3): 176-183, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28498232

RESUMEN

The accelerated generation of endothelial microparticles (EMPs) and impaired angiogenesis are the markers of vascular pathology during various cardiovascular and inflammatory conditions including hypertension. Because studies comparing the effects of antihypertensive agents on these 2 parameters are limited, this study was designed to compare the effects of 3 antihypertensive agents: aliskiren, nebivolol, and olmesartan, on the EMP generation and angiogenesis. Changes in the hemodynamic parameters and serum EMP count were determined after 3 weeks of the drug treatments [aliskiren (30 mg/kg), nebivolol (10 mg/kg), or olmesartan (5 mg/kg) per orally] in L-NAME-induced rat model of hypertension. The 3 drugs prevented the rise in blood pressure and EMP count to a similar extent. Furthermore, nebivolol was found to possess more potent and concentration-dependent antiangiogenic activity compared with aliskiren, whereas olmesartan was devoid of such an effect. The EMPs generated by virtue of the respective drug treatments were found to be involved in mediating the antiangiogenic effect of nebivolol and aliskiren. In addition, olmesartan treatment also resulted in the increased eNOS expression. The results of this study show that the antihypertensive drugs, viz. aliskiren, nebivolol, and olmesartan, regulate the vascular health by their differential effects on the EMP generation and angiogenesis.


Asunto(s)
Amidas/administración & dosificación , Antihipertensivos/administración & dosificación , Micropartículas Derivadas de Células/efectos de los fármacos , Fumaratos/administración & dosificación , Hipertensión/tratamiento farmacológico , Imidazoles/administración & dosificación , Nebivolol/administración & dosificación , Neovascularización Patológica/tratamiento farmacológico , Tetrazoles/administración & dosificación , Animales , Quimioterapia Combinada , Humanos , Hipertensión/metabolismo , Masculino , Neovascularización Patológica/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
12.
Pulm Pharmacol Ther ; 36: 10-21, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26608704

RESUMEN

Increased sympathetic nervous system (SNS) activity is associated with cardiovascular diseases but its role has not been completely explored in pulmonary hypertension (PH). Increased SNS activity is distinguished by elevated level of norepinephrine (NE) and activity of γ-Amino butyric acid Transminase (GABA-T) which degrades GABA, an inhibitory neurotransmitter within the central and peripheral nervous system. Therefore, we hypothesized that GABA-T may contribute in pathophysiology of PH by modulating level of GABA and NE. The effect of daily oral administration of GABA-T inhibitor, Vigabatrin (GVG, 50 and 75 mg/kg/day, 35 days) was studied following a single subcutaneous administration of monocrotaline (MCT, 60 mg/kg) in male SD rats. The pressure and hypertrophy of right ventricle (RV), oxidative stress, inflammation, pulmonary vascular remodelling were assessed after 35 days in MCT treated rats. The expression of GABA-T and HIF-1α was studied in lung tissue. The levels of plasma NE (by High performance liquid chromatography coupled with electrochemical detector; HPLC-ECD) and lung GABA (by liquid chromatography-mass spectrometry) were also estimated. GVG at both doses significantly attenuated increased in pressure (35.82 ± 4.80 mm Hg, p < 0.001; 28.37 ± 3.32 mm Hg, p < 0.001 respectively) and hypertrophy of RV, pulmonary vascular remodelling, oxidative stress and inflammation in lungs of MCT exposed rats. GVG also reduced the expression of GABA-T and HIF-1α in MCT treated rats. Increased NE level and decreased GABA level was also reversed by GVG in MCT exposed rats. GABA-T plays an important role in PH by modulating SNS activity and may be considered as a therapeutic target in PH.


Asunto(s)
4-Aminobutirato Transaminasa/metabolismo , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/enzimología , Monocrotalina , 4-Aminobutirato Transaminasa/antagonistas & inhibidores , Animales , Inhibidores Enzimáticos/farmacología , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/fisiopatología , Pulmón/metabolismo , Masculino , Norepinefrina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxígeno/sangre , Neumonía/fisiopatología , Ratas , Ratas Sprague-Dawley , Análisis de Supervivencia , Vigabatrin/farmacología , Ácido gamma-Aminobutírico/metabolismo
13.
Pulm Pharmacol Ther ; 30: 66-79, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25481773

RESUMEN

Recently, inhibition of poly (ADP-ribose) polymerase-1 (PARP1) was shown to be protective in experimental pulmonary hypertension (PH) and prevented right ventricular hypertrophy (RVH) associated with it. However, molecular mechanism behind cardioprotection by PARP1 inhibition in PH still needs detailed exploration. Therefore, effect of inhibition of PARP1 on the right ventricle (RV) dysfunction was studied in monocrotaline (MCT) induced PH model. Following a single dose administration of MCT (60 mg/kg, s.c.), male Sprague-Dawley rats were treated with PARP1 inhibitor 1,5-Isoquinolinediol (ISO, 3 mg/kg, i.p.) for 35 days for preventive study and from day 21-35 for curative study. RV pressure (RVP) and RVH were measured after 35 days. Histophathological studies, PARP1 activity, mRNA and protein expression were studied in isolated RV. Oxidative and nitosative stress, inflammation and Matrix metalloproteinases (MMPs)/Tissue inhibitor of metalloproteinase 2 (TIMP2) were also assessed. Mitochondrial dysfunction was studied by mitochondrial membrane permeability and estimation of Nicotinamide adenine dinucleotide (NAD) and Adenosine triphosphate (ATP). Apoptosis in RV was assessed by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), caspase 3 activity and cleaved PARP1 expression. PARP1 inhibition significantly reversed the increase in RVP and RVH in both preventive and curative treatment in the MCT-injected rats. ISO lowered oxidative and nitrosative stress and inflammation and restored the balance of MMPs/TIMP2 expression. PARP1 inhibition prevented mitochondrial dysfunction and the release of cell death factors from mitochondria. ISO also decreased apoptosis by decreasing number of TUNEL positive cells, caspase 3 activity and PARP1 cleavage in RV. Thus, PARP1 inhibition ameliorated PH induced RV hypertrophy and may emerge as a new therapeutic target for PH.


Asunto(s)
Hipertensión Pulmonar/prevención & control , Isoquinolinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Disfunción Ventricular Derecha/prevención & control , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/prevención & control , Etiquetado Corte-Fin in Situ , Masculino , Mitocondrias/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Monocrotalina/toxicidad , NAD/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ratas , Ratas Sprague-Dawley , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Disfunción Ventricular Derecha/fisiopatología
14.
Homeopathy ; 104(1): 24-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25576268

RESUMEN

BACKGROUND: Lycopodium clavatum (Lyc) is a widely used homeopathic medicine for the liver, urinary and digestive disorders. Recently, acetyl cholinesterase (AchE) inhibitory activity has been found in Lyc alkaloid extract, which could be beneficial in dementia disorder. However, the effect of Lyc has not yet been explored in animal model of memory impairment and on cerebral blood flow. AIM: The present study was planned to explore the effect of Lyc on learning and memory function and cerebral blood flow (CBF) in intracerebroventricularly (ICV) administered streptozotocin (STZ) induced memory impairment in rats. MATERIALS AND METHODS: Memory deficit was induced by ICV administration of STZ (3 mg/kg) in rats on 1st and 3rd day. Male SD rats were treated with Lyc Mother Tincture (MT) 30, 200 and 1000 for 17 days. Learning and memory was evaluated by Morris water maze test on 14th, 15th and 16th day. CBF was measured by Laser Doppler flow meter on 17th day. RESULTS: STZ (ICV) treated rats showed impairment in learning and memory along with reduced CBF. Lyc MT and 200 showed improvement in learning and memory. There was increased CBF in STZ (ICV) treated rats at all the potencies of Lyc studied. CONCLUSION: The above study suggests that Lyc may be used as a drug of choice in condition of memory impairment due to its beneficial effect on CBF.


Asunto(s)
Circulación Cerebrovascular/efectos de los fármacos , Homeopatía , Lycopodium , Trastornos de la Memoria/tratamiento farmacológico , Memoria/efectos de los fármacos , Animales , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Estreptozocina/farmacología
15.
Pharm Biol ; 53(1): 147-57, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25237891

RESUMEN

CONTEXT: Withania somnifera (Linn.) Dunal (Solanaceae), a clinically used herbal drug in Ayurveda, shows potent antioxidant, anti-inflammatory, pro-apoptotic, and cardioprotective effects. However, the efficacy of W. somnifera in pulmonary hypertension (PH), a cardiopulmonary disorder, remains unexplored. OBJECTIVE: The present study investigates the effect of W. somnifera root powder on monocrotaline (MCT)-induced PH in rats. MATERIALS AND METHODS: In preventive studies, W. somnifera root powder (50 and 100 mg/kg/d, p.o.) was administered from day 1 following single administration of MCT (60 mg/kg, s.c.) in Sprague-Dawley (SD) rats. After 35 d, right ventricular pressure (RVP) was measured in anesthetized rats. Various physical markers of right ventricular hypertrophy (RVH) were measured in isolated hearts. Markers of endothelial function, inflammation, and oxidative stress were estimated in lung homogenate. Vasoreactivity of pulmonary arteries was also studied. In therapeutic treatment, W. somnifera (50 and 100 mg/kg/d, p.o.) was administered from day 21 to 35 post-MCT administration. RESULTS: Preventive treatment with 50 and 100 mg/kg W. somnifera significantly reduced the RVP (32.18 ± 1.273 mm Hg and 29.98 ± 1.119 mm Hg, respectively, versus 42.96 ± 1.789 mm Hg of MCT) and all markers of RVH in MCT-challenged rats. There was an improvement in inflammation, oxidative stress and endothelial dysfunction, and attenuation of proliferative marker and apoptotic resistance in lungs. Therapeutic treatment with W. somnifera (100 mg/kg) also reduced RVP and RVH. DISCUSSION: This study demonstrated that W. somnifera significantly protected against MCT-induced PH due to its antioxidant, anti-inflammatory, pro-apoptotic, and cardioprotective properties.


Asunto(s)
Antihipertensivos/uso terapéutico , Cardiotónicos/uso terapéutico , Hipertensión Pulmonar/prevención & control , Monocrotalina/farmacología , Preparaciones de Plantas/uso terapéutico , Withania/química , Administración Oral , Animales , Antihipertensivos/administración & dosificación , Antihipertensivos/química , Cardiotónicos/administración & dosificación , Cardiotónicos/química , Relación Dosis-Respuesta a Droga , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Corazón/efectos de los fármacos , Hipertensión Pulmonar/inducido químicamente , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Medicina Ayurvédica , Tamaño de los Órganos/efectos de los fármacos , Preparaciones de Plantas/administración & dosificación , Preparaciones de Plantas/química , Raíces de Plantas/química , Polvos , Ratas Sprague-Dawley
16.
Reproduction ; 147(6): 765-80, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24516177

RESUMEN

Pregnancy requires successful implantation of an embryo, which occurs during a restricted period defined as 'receptivity of the endometrium' and is influenced by the ovarian steroids progesterone and oestradiol. The role of poly(ADP-ribose)polymerase-1 (PARP1) in apoptosis is well established. However, it is also involved in cell differentiation, proliferation and tissue remodelling. Previous studies have described the presence of PARP in the uterus, but its exact role in embryo implantation is not yet elucidated. Hence, in this study, we studied the expression of PARP1 in the uterus during embryo implantation and decidualisation, and its regulation by ovarian steroids. Our results show upregulation of the native form of PARP1 (∼116 kDa) in the cytosolic and nuclear compartments of implantation and non-implantation sites at day 5 (0500 h), followed by downregulation at day 5 (1000 h), during the embryo implantation period. The transcript level of Parp1 was also augmented during day 5 (0500 h). Inhibition of PARP1 activity by the drug EB-47 decreased the number of embryo implantation sites and blastocysts at day 5 (1000 h). Further, cleavage of native PARP1 was due to the activity of caspase-3 during the peri-implantation stage (day 5 (0500 h)), and is also required for embryo implantation, as inhibition of its activity compromised blastocyst implantation. The native (∼116 kDa) and cleaved (∼89 kDa) forms of PARP1 were both elevated during decidualisation of the uterus. Furthermore, the expression level of PARP1 in the uterus was found to be under the control of the hormone oestrogen. Our results clearly demonstrate that PARP1 participates in the process of embryo implantation.


Asunto(s)
Implantación del Embrión/efectos de los fármacos , Endometrio/efectos de los fármacos , Estradiol/farmacología , Fármacos para la Fertilidad Femenina/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Caspasa 3/metabolismo , Inhibidores de Caspasas/farmacología , Decidua/efectos de los fármacos , Decidua/enzimología , Implantación Tardía del Embrión/efectos de los fármacos , Endometrio/enzimología , Femenino , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Ratones , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/genética , Embarazo , Progesterona/farmacología , Seudoembarazo/enzimología , ARN Mensajero/metabolismo , Factores de Tiempo , Regulación hacia Arriba
17.
Neurol Sci ; 35(3): 409-14, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24013551

RESUMEN

Neuroinflammation has been considered to be an integrated part of human neurodegenerative diseases. In this study, we examined the effect of guggulipid on cell proliferation, nitrite release, interleukin IL-6 and IL-1 beta release, and expression of COX-2 and glial fibrillary acidic protein (GFAP) in LPS-stimulated U373MG cells. LPS significantly stimulated human astrocytoma cells U373MG by up-regulating these neuroinflammatory mediators. Guggulipid alone had no effect on the cell proliferation of U373MG cells. The up regulation in nitrite release, cell proliferation, and release of IL-6 and IL-1 beta in LPS stimulated human astrocytoma cells were dose-dependently inhibited by co-treatment with guggulipid. The expression level of COX-2 and GFAP proteins was up regulated by LPS but the increased level of COX-2 and GFAP was significantly down regulated by treatment with guggulipid. These data indicate that guggulipid has a modulatory effect on all these parameters, which might explain its beneficial effect in the treatment of neuroinflammation-associated disorders directly relating to human aspects.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Lipopolisacáridos/farmacología , Extractos Vegetales/farmacología , Gomas de Plantas/farmacología , Astrocitoma/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Commiphora , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , FN-kappa B/metabolismo , Nitritos/metabolismo , Transporte de Proteínas/efectos de los fármacos
18.
Int Immunopharmacol ; 139: 112654, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38996777

RESUMEN

Hypertension causes platelet activation and adhesion in the brain resulting in glial activation and neuroinflammation. Further, activation of Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Receptor (ACE2/Ang (1-7)/MasR) axis of central Renin-Angiotensin System (RAS), is known to reduce glial activation and neuroinflammation, thereby exhibiting anti-hypertensive and anti-neuroinflammatory properties. Therefore, in the present study, the role of ACE2/Ang (1-7)/MasR axis was studied on platelet-induced glial activation and neuroinflammation using Diminazene Aceturate (DIZE), an ACE2 activator, in astrocytes and microglial cells as well as in rat model of hypertension. We found that the ACE2 activator DIZE, independently of its BP-lowering properties, efficiently prevented hypertension-induced glial activation, neuroinflammation, and platelet CD40-CD40L signaling via upregulation of ACE2/Ang (1-7)/MasR axis. Further, DIZE decreased platelet deposition in the brain by reducing the expression of adhesion molecules on the brain endothelium. Activation of ACE2 also reduced hypertension-induced endothelial dysfunction by increasing eNOS bioavailability. Interestingly, platelets isolated from hypertensive rats or activated with ADP had significantly increased sCD40L levels and induced significantly more glial activation than platelets from DIZE treated group. Therefore, injection of DIZE pre-treated ADP-activated platelets into normotensive rats strongly reduced glial activation compared to ADP-treated platelets. Moreover, CD40L-induced glial activation, CD40 expression, and NFкB-NLRP3 inflammatory signaling are reversed by DIZE. Furthermore, the beneficial effects of ACE2 activation, DIZE was found to be significantly blocked by MLN4760 (ACE2 inhibitor) as well as A779 (MasR antagonist) treatments. Hence, our study demonstrated that ACE2 activation reduced the platelet CD40-CD40L induced glial activation and neuroinflammation, hence imparted neuroprotection.

19.
Mol Neurobiol ; 60(1): 203-227, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36251234

RESUMEN

Neuroinflammation is associated with activation of glial cells and pro-inflammatory arm of the central Renin Angiotensin System (RAS) namely, Angiotensin-Converting Enzyme/Angiotensin II/Angiotensin Type 1 Receptor (ACE/Ang II/AT1R) axis. Apart from this, another axis of RAS also exists, Angiotensin-Converting Enzyme 2/Angiotensin (1-7)/Mas Receptor (ACE2/Ang (1-7)/MasR), which counters ACE/Ang II/AT1R axis by showing anti-inflammatory properties. However, the role of ACE2/Ang (1-7)/MasR axis has not been explored in glial activation and neuroinflammation. Hence, the present study tries to unveil the role of ACE2/Ang (1-7)/MasR axis in lipopolysaccharide (LPS)-induced neuroinflammation using diminazene aceturate (DIZE), an ACE2 activator, in astroglial (C6) and microglial (BV2) cells as well as male SD rats. We found that ACE2 activation efficiently prevented LPS-induced changes by decreasing glial activation, inflammatory signaling, cell migration, ROS generation via upregulation of ACE2/Ang (1-7)/MasR signaling. In addition, activation of ACE2/Ang (1-7)/MasR axis by DIZE significantly suppressed the pro-inflammatory ACE/Ang II/AT1R axis by reducing Ang II level in neuroinflammatory conditions induced by LPS in both in vitro and in vivo. ACE2/Ang (1-7)/MasR axis activation further decreased mitochondrial depolarization and apoptosis, hence providing neuroprotection. Furthermore, to validate that the beneficial effect of the ACE2 activator was indeed through MasR, a selective MasR antagonist (A779) was used that significantly blocked the anti-inflammatory effect of ACE2 activation by DIZE. Hence, our study demonstrated that ACE2 activation imparted neuroprotection by enhancing ACE2/Ang (1-7)/MasR signaling which in turn decreased glial activation, neuroinflammation, and apoptosis and improved mitochondrial health.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Neuroglía , Animales , Masculino , Ratas , Angiotensina I/farmacología , Angiotensina II/farmacología , Antiinflamatorios , Lipopolisacáridos/farmacología , Enfermedades Neuroinflamatorias , Fragmentos de Péptidos/farmacología , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1 , Receptores Acoplados a Proteínas G , Neuroglía/efectos de los fármacos
20.
Eur J Pharmacol ; 943: 175558, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731722

RESUMEN

PURPOSE: Protective effect of 17ß-estradiol is well-known in pulmonary hypertension. However, estrogen-based therapy may potentially increase the risk of breast cancer, necessitating a search for novel drugs. This study, therefore, investigated the ameliorative effects of a selective estrogen receptor modulator, ormeloxifene, in pulmonary hypertension. METHODS: Cardiomyocytes (H9C2) and human pulmonary arterial smooth muscle cells (HPASMCs) were exposed to hypoxia (1% O2) for 42 and 96 h, respectively, with or without ormeloxifene pre-treatment (1 µM). Also, female (ovary-intact or ovariectomized) and male Sprague-Dawley rats received monocrotaline (60 mg/kg, once, subcutaneously), with or without ormeloxifene treatment (2.5 mg/kg, orally) for four weeks. RESULTS: Hypoxia dysregulated 17ß-hydroxysteroid dehydrogenase (17ßHSD) 1 & 2 expressions, reducing 17ß-estradiol production and estrogen receptors α and ß in HPASMC but increasing estrone, proliferation, inflammation, oxidative stress, and mitochondrial dysfunction. Similarly, monocrotaline decreased plasma 17ß-estradiol and uterine weight in ovary-intact rats. Further, monocrotaline altered 17ßHSD1 & 2 expressions and reduced estrogen receptors α and ß, increasing right ventricular pressure, proliferation, inflammation, oxidative stress, endothelial dysfunction, mitochondrial dysfunction, and vascular remodeling in female and male rats, with worsened conditions in ovariectomized rats. Ormeloxifene was less uterotrophic; however, it attenuated both hypoxia and monocrotaline effects by improving pulmonary 17ß-estradiol synthesis. Furthermore, ormeloxifene decreased cardiac hypertrophy and right ventricular remodeling induced by hypoxia and monocrotaline. CONCLUSION: This study demonstrates that ormeloxifene promoted pulmonary 17ß-estradiol synthesis, alleviated inflammation, improved the NOX4/HO1/Nrf/PPARγ/PGC-1α axis, and attenuated pulmonary hypertension. It is evidently safe at tested concentrations and may be effectively repurposed for pulmonary hypertension treatment.


Asunto(s)
Hipertensión Pulmonar , Moduladores Selectivos de los Receptores de Estrógeno , Ratas , Masculino , Femenino , Humanos , Animales , Moduladores Selectivos de los Receptores de Estrógeno/efectos adversos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/prevención & control , Hipertensión Pulmonar/inducido químicamente , Ratas Sprague-Dawley , Receptor alfa de Estrógeno , Monocrotalina/efectos adversos , Estradiol/farmacología , Estradiol/uso terapéutico , Arteria Pulmonar , Inflamación , Hipoxia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA