Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 21(17): 7145-7151, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34407373

RESUMEN

Heat transfer through heterointerfaces is intrinsically hampered by a thermal boundary resistance originating from the discontinuity of the elastic properties. Here, we show that with shrinking dimensions the heat flow from an ultrathin epitaxial film through atomically flat interfaces into a single crystalline substrate is significantly reduced due to violation of Boltzmann equipartition theorem in the angular phonon phase space. For films thinner than the phonons mean free path, we find phonons trapped in the film by total internal reflection, thus suppressing heat transfer. Repopulation of those phonon states, which can escape the film through the interface by transmission and refraction, becomes the bottleneck for cooling. The resulting nonequipartition in the angular phonon phase space slows down the cooling by more than a factor of 2 compared to films governed by phonons diffuse scattering. These allow tailoring of the thermal interface conductance via manipulation of the interface.

2.
Phys Rev Lett ; 109(18): 186101, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23215299

RESUMEN

We used ultrafast electron diffraction and density-functional theory calculations to gain insight into the charge density wave (CDW) formation on In/Si(111). Weak excitation by a femtosecond-laser pulse results in the melting of the CDW. The immediate freezing is hindered by a barrier for the motion of atoms during the phase transition: The melted CDW constitutes a long-lived, supercooled phase and is strong evidence for a first-order transition. The freezing into the CDW is triggered by preexisting adsorbates. Starting at these condensation nuclei, the CDW expands one dimensionally on the In/Si(111) surface, with a constant velocity of more than 80 m/s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA