Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Reprod ; 110(1): 211-218, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37724921

RESUMEN

Maternal exposure to microplastics and nanoplastics has been shown to result in fetal growth restriction in mice. In this study, we investigated the placental and fetal hemodynamic responses to plastics exposure in mice using high-frequency ultrasound. Healthy, pregnant CD-1 dams were given either 106 ng/L of 5 µm polystyrene microplastics or 106 ng/L of 50 nm polystyrene nanoplastics in drinking water throughout gestation and were compared with controls. Maternal exposure to both microplastics and nanoplastics resulted in evidence of placental dysfunction that was highly dependent on the particle size. The umbilical artery blood flow increased by 48% in the microplastic-exposed group and decreased by 25% in the nanoplastic-exposed group compared to controls (p < 0.05). The microplastic- and nanoplastic-exposed fetuses showed a significant decrease in the middle cerebral artery pulsatility index of 10% and 13%, respectively, compared to controls (p < 0.05), indicating vasodilation of the cerebral circulation, a fetal adaptation that is part of the brain sparing response to preserve oxygen delivery. Hemodynamic markers of placental dysfunction and fetal hypoxia were more pronounced in the group exposed to polystyrene nanoplastics, suggesting nanoplastic exposure during human pregnancy has the potential to disrupt fetal brain development, which in turn may cause suboptimal neurodevelopmental outcomes.


Asunto(s)
Microplásticos , Plásticos , Embarazo , Femenino , Humanos , Animales , Ratones , Poliestirenos/toxicidad , Placenta/irrigación sanguínea , Desarrollo Fetal
2.
J Huntingtons Dis ; 13(3): 279-299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39213087

RESUMEN

Structural magnetic resonance imaging (MRI) is a powerful tool to visualize 3D neuroanatomy and assess pathology and disease progression in neurodegenerative disorders such as Huntington's disease (HD). The development of mouse models of HD that reproduce many of the psychiatric, motor and cognitive impairments observed in human HD has improved our understanding of the disease and provided opportunities for testing novel therapies. Similar to the clinical scenario, MRI of mouse models of HD demonstrates onset and progression of brain pathology. Here, we provided an overview of the articles that used structural MRI in mouse models of HD to date, highlighting the differences between studies and models and describing gaps in the current state of knowledge and recommendations for future studies.


Asunto(s)
Encéfalo , Modelos Animales de Enfermedad , Enfermedad de Huntington , Imagen por Resonancia Magnética , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/patología , Animales , Imagen por Resonancia Magnética/métodos , Ratones , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos
3.
Chemosphere ; 356: 141923, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599328

RESUMEN

Poly- and perfluoroalkyl substances (PFAS) are a group of compounds with uses in industry and many consumer products. Concerns about the potential health effects of these compounds resulted in regulation by the Stockholm Convention on the use of three of the most common PFAS, including perfluorooctanoic acid (PFOA). Thousands of PFAS remain in production that are unregulated and for which their toxicity is unknown. Our group recently identified a new class of PFAS, fluorotelomer ethoxylates (FTEOs), in indoor dust and industrial wastewater. In this study, we investigated the effect of PFAS on placental metabolism by exposing healthy, pregnant CD-1 mice to PFOA or FTEOs at one of three concentrations (0 ng/L (controls), 5 ng/L, 100 ng/L) (n = 7-8/group). While PFOA is banned and PFOA concentrations in human blood are decreasing, we hypothesize that FTEOs will cause adverse pregnancy outcomes similar to PFOA, the compounds they were meant to replace. Placental tissue samples were collected at embryonic day 17.5 and 1H solid-state magic angle spinning nuclear magnetic resonance spectroscopy was used to determine the relative concentration of placental metabolites (n = 18-20/group). At the highest concentration, the relative concentrations of glucose and threonine were increased and the relative concentration of creatine was decreased in the PFOA-exposed placentas compared to controls (p < 0.05). In contrast, the relative concentrations of asparagine and lysine were decreased and the relative concentration of creatine was increased in the FTEOs-exposed placentas compared to controls (p < 0.05). Partial least squares - discriminant analysis showed the FTEOs-exposed and control groups were significantly separated (p < 0.005) and pathway analysis found four biochemical pathways were perturbed following PFOA exposure, while one pathway was altered following FTEOs exposure. Maternal exposure to PFOA and FTEOs had a significant impact on the placental metabolome, with the effect depending on the pollutant. This work motivates further studies to determine exposure levels and evaluate associations with adverse outcomes in human pregnancies.


Asunto(s)
Caprilatos , Fluorocarburos , Placenta , Fluorocarburos/toxicidad , Femenino , Animales , Embarazo , Caprilatos/toxicidad , Ratones , Placenta/metabolismo , Placenta/efectos de los fármacos , Contaminantes Ambientales/toxicidad
4.
Sci Rep ; 14(1): 399, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172192

RESUMEN

While microplastics have been recently detected in human blood and the placenta, their impact on human health is not well understood. Using a mouse model of environmental exposure during pregnancy, our group has previously reported that exposure to polystyrene micro- and nanoplastics throughout gestation results in fetal growth restriction. While polystyrene is environmentally relevant, polyethylene is the most widely produced plastic and amongst the most commonly detected microplastic in drinking water and human blood. In this study, we investigated the effect of maternal exposure to polyethylene micro- and nanoplastics on fetal growth and placental function. Healthy, pregnant CD-1 dams were divided into three groups: 106 ng/L of 740-4990 nm polyethylene with surfactant in drinking water (n = 12), surfactant alone in drinking water (n = 12) or regular filtered drinking water (n = 11). At embryonic day 17.5, high-frequency ultrasound was used to investigate the placental and fetal hemodynamic responses following exposure. While maternal exposure to polyethylene did not impact fetal growth, there was a significant effect on placental function with a 43% increase in umbilical artery blood flow in the polyethylene group compared to controls (p < 0.01). These results suggest polyethylene has the potential to cause adverse pregnancy outcomes through abnormal placental function.


Asunto(s)
Agua Potable , Placenta , Humanos , Embarazo , Femenino , Placenta/irrigación sanguínea , Microplásticos , Plásticos , Exposición Materna/efectos adversos , Polietileno/toxicidad , Poliestirenos , Desarrollo Fetal , Resultado del Embarazo , Hemodinámica , Retardo del Crecimiento Fetal , Tensoactivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA