Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gut Microbes ; 13(1): 1988836, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34693864

RESUMEN

Colitis is characterized by colonic inflammation and impaired gut health. Both features aggravate obesity and insulin resistance. Host defense peptides (HDPs) are key regulators of gut homeostasis and generally malfunctioning in above-mentioned conditions. We aimed here to improve bowel function in diet-induced obesity and chemically induced colitis through daily oral administration of lysozyme, a well-characterized HDP, derived from Acremonium alcalophilum.C57BL6/J mice were fed either low-fat reference diet or HFD ± daily gavage of lysozyme for 12 weeks, followed by metabolic assessment and evaluation of colonic microbiota encroachment. To further evaluate the efficacy of intestinal inflammation, we next supplemented chow-fed BALB/c mice with lysozyme during Dextran Sulfate Sodium (DSS)-induced colitis in either conventional or microbiota-depleted mice. We assessed longitudinal microbiome alterations by 16S amplicon sequencing in both models.Lysozyme dose-dependently alleviated intestinal inflammation in DSS-challenged mice and further protected against HFD-induced microbiota encroachment and fasting hyperinsulinemia. Observed improvements of intestinal health relied on a complex gut flora, with the observation that microbiota depletion abrogated lysozyme's capacity to mitigate DSS-induced colitis.Akkermansia muciniphila associated with impaired gut health in both models, a trajectory that was mitigated by lysozyme administration. In agreement with this notion, PICRUSt2 analysis revealed specific pathways consistently affected by lysozyme administration, independent of vivarium, disease model and mouse strain.Taking together, lysozyme leveraged the gut microbiota to curb DSS-induced inflammation, alleviated HFD-induced gastrointestinal disturbances and lowered fasting insulin levels in obese mice. Collectively, these data present A. alcalophilum-derived lysozyme as a promising candidate to enhance gut health.


Asunto(s)
Acremonium/enzimología , Colitis/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Muramidasa/administración & dosificación , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Colitis/inducido químicamente , Colitis/microbiología , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Muramidasa/metabolismo
2.
Sci Rep ; 10(1): 20103, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208769

RESUMEN

Diet is an important component in weight management strategies, but heterogeneous responses to the same diet make it difficult to foresee individual weight-loss outcomes. Omics-based technologies now allow for analysis of multiple factors for weight loss prediction at the individual level. Here, we classify weight loss responders (N = 106) and non-responders (N = 97) of overweight non-diabetic middle-aged Danes to two earlier reported dietary trials over 8 weeks. Random forest models integrated gut microbiome, host genetics, urine metabolome, measures of physiology and anthropometrics measured prior to any dietary intervention to identify individual predisposing features of weight loss in combination with diet. The most predictive models for weight loss included features of diet, gut bacterial species and urine metabolites (ROC-AUC: 0.84-0.88) compared to a diet-only model (ROC-AUC: 0.62). A model ensemble integrating multi-omics identified 64% of the non-responders with 80% confidence. Such models will be useful to assist in selecting appropriate weight management strategies, as individual predisposition to diet response varies.


Asunto(s)
Dietoterapia/métodos , Microbioma Gastrointestinal , Pérdida de Peso , Biomarcadores/sangre , Biomarcadores/orina , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Aprendizaje Automático , Masculino , Periodo Posprandial , Curva ROC , Ensayos Clínicos Controlados Aleatorios como Asunto , Reproducibilidad de los Resultados , Resultado del Tratamiento , Granos Enteros
3.
ISME J ; 11(1): 300-303, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27505346

RESUMEN

It is well known that bacteria often exist in naturally formed multispecies biofilms. Within these biofilms, interspecies interactions seem to have an important role in ecological processes. Little is known about the effects of interspecies interactions on gene expression in these multispecies biofilms. This study presents a comparative gene expression analysis of the Xanthomonas retroflexus transcriptome when grown in a single-species biofilm and in dual- and four-species consortia with Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus. The results revealed complex interdependent interaction patterns in the multispecies biofilms. Many of the regulated functions are related to interactions with the external environment and suggest a high phenotypic plasticity in response to coexistence with other species. Furthermore, the changed expression of genes involved in aromatic and branched-chain amino acid biosynthesis suggests nutrient cross feeding as a contributing factor for the observed synergistic biofilm production when these four species coexists in a biofilm.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas , Xanthomonas/fisiología , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Transcriptoma , Xanthomonas/clasificación , Xanthomonas/genética
4.
ISME J ; 6(6): 1094-106, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22170425

RESUMEN

Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of 'Candidatus Accumulibacter', a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (>95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity.


Asunto(s)
Bacterias/genética , Metagenoma , Fósforo/metabolismo , Aguas Residuales/microbiología , Bacterias/clasificación , Bacterias/metabolismo , ADN Bacteriano/genética , Hibridación Fluorescente in Situ , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA