Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Drug Resist Updat ; 59: 100795, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34983733

RESUMEN

Resistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies. When aberrantly expressed, the ABC transporter multidrug resistance-associated protein 1 (MRP1, ABCC1) confers MDR, but can also shift cellular redox balance, leaving the cell vulnerable to select agents. Here, we explore the physiological roles of MRP1, the rational for targeting this transporter in cancer, the development of small molecule MRP1 inhibitors, and the most recent developments in alternative therapeutic approaches for targeting cancers with MRP1 overexpression. We discuss approaches that extend beyond simple MRP1 inhibition by exploiting the collateral sensitivity to glutathione depletion and ferroptosis, the rationale for targeting the shared transcriptional regulators of both MRP1 and glutathione biosynthesis, advances in gene silencing, and new molecules that modulate transporter activity to the detriment of the cancer cell. These strategies illustrate promising new approaches to address multidrug resistant disease that extend beyond the simple reversal of MDR and offer exciting routes for further research.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Neoplasias , Transportadoras de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
2.
Methods Mol Biol ; 2806: 55-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676796

RESUMEN

Realistic and renewable laboratory models that accurately reflect the distinct clinical features of childhood cancers have enormous potential to speed research progress. These models help us to understand disease biology, develop new research methods, advance new therapies to clinical trial, and implement personalized medicine. This chapter describes methods to generate patient-derived xenograft models of neuroblastoma and rhabdomyosarcoma, two tumor types for which children with high-risk disease have abysmal survival outcomes and survivors have lifelong-debilitating effects from treatment. Further, this protocol addresses model development from diverse clinical tumor tissue samples, subcutaneous and orthotopic engraftment, and approaches to avoid model loss.


Asunto(s)
Neuroblastoma , Rabdomiosarcoma , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Ratones , Neuroblastoma/patología , Neuroblastoma/genética , Rabdomiosarcoma/patología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Niño , Modelos Animales de Enfermedad , Xenoinjertos , Medicina de Precisión/métodos , Línea Celular Tumoral
3.
Nat Commun ; 15(1): 6569, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095374

RESUMEN

Liquid-liquid phase separation (LLPS) facilitates the formation of membraneless organelles within cells, with implications in various biological processes and disease states. AT-rich interactive domain-containing protein 1A (ARID1A) is a chromatin remodeling factor frequently associated with cancer mutations, yet its functional mechanism remains largely unknown. Here, we find that ARID1A harbors a prion-like domain (PrLD), which facilitates the formation of liquid condensates through PrLD-mediated LLPS. The nuclear condensates formed by ARID1A LLPS are significantly elevated in Ewing's sarcoma patient specimen. Disruption of ARID1A LLPS results in diminished proliferative and invasive abilities in Ewing's sarcoma cells. Through genome-wide chromatin structure and transcription profiling, we identify that the ARID1A condensate localizes to EWS/FLI1 target enhancers and induces long-range chromatin architectural changes by forming functional chromatin remodeling hubs at oncogenic target genes. Collectively, our findings demonstrate that ARID1A promotes oncogenic potential through PrLD-mediated LLPS, offering a potential therapeutic approach for treating Ewing's sarcoma.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN , Proteína EWS de Unión a ARN , Sarcoma de Ewing , Factores de Transcripción , Humanos , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Línea Celular Tumoral , Proteína EWS de Unión a ARN/metabolismo , Proteína EWS de Unión a ARN/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Cromatina/metabolismo , Carcinogénesis/genética , Animales , Ratones , Dominios Proteicos , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Separación de Fases
4.
FEBS J ; 289(13): 3854-3875, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35080351

RESUMEN

MRP1 (ABCC1) is a membrane transporter that confers multidrug resistance in cancer cells by exporting chemotherapeutic agents, often in a reduced glutathione (GSH)-dependent manner. This transport activity can be altered by compounds (modulators) that block drug transport while simultaneously stimulating GSH efflux by MRP1. In MRP1-expressing cells, modulator-stimulated GSH efflux can be sufficient to deplete GSH and increase sensitivity to chemotherapy, enhancing cancer cell death. Further development of clinically useful MRP1 modulators requires a better mechanistic understanding of modulator binding and its relationship to GSH binding and transport. Here, we explore the mechanism of two MRP1 small molecule modulators, 5681014 and 7914321, in relation to a bipartite substrate-binding cavity of MRP1. Binding of these modulators to MRP1 was dependent on the presence of GSH but not its reducing capacity. Accordingly, the modulators poorly inhibited organic anion transport by K332L-mutant MRP1, where GSH binding and transport is limited. However, the inhibitory activity of the modulators was also diminished by mutations that limit E2 17ßG but spare GSH-conjugate binding and transport (W553A, M1093A, W1246A), suggesting overlap between the E2 17ßG and modulator binding sites. Immunoblots of limited trypsin digests of MRP1 suggest that binding of GSH, but not the modulators, induces a conformation change in MRP1. Together, these findings support the model, in which GSH binding induces a conformation change that facilitates binding of MRP1 modulators, possibly in a proposed hydrophobic binding pocket of MRP1. This study may facilitate the structure-guided design of more potent and selective MRP1 modulators.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Transporte Biológico , Glutatión/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
5.
Oncogene ; 39(17): 3555-3570, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32123312

RESUMEN

Amplification of the MYCN oncogene occurs in ~25% of primary neuroblastomas and is the single most powerful biological marker of poor prognosis in this disease. MYCN transcriptionally regulates a range of biological processes important for cancer, including cell metabolism. The MYCN-regulated metabolic gene SLC16A1, encoding the lactate transporter monocarboxylate transporter 1 (MCT1), is a potential therapeutic target. Treatment of neuroblastoma cells with the MCT1 inhibitor SR13800 increased intracellular lactate levels, disrupted the nicotinamide adenine dinucleotide (NADH/NAD+) ratio, and decreased intracellular glutathione levels. Metabolite tracing with 13C-glucose and 13C-glutamine following MCT1 inhibitor treatment revealed increased quantities of tricarboxylic acid (TCA) cycle intermediates and increased oxygen consumption rate. MCT1 inhibition was highly synergistic with vincristine and LDHA inhibition under cell culture conditions, but this combination was ineffective against neuroblastoma xenografts. Posttreatment xenograft tumors had increased synthesis of the MCT1 homolog MCT4/SLC16A, a known resistance factor to MCT1 inhibition. We found that MCT4 was negatively regulated by MYCN in luciferase reporter assays and its synthesis in neuroblastoma cells was increased under hypoxic conditions and following hypoxia-inducible factor (HIF1) induction, suggesting that MCT4 may contribute to resistance to MCT1 inhibitor treatment in hypoxic neuroblastoma tumors. Co-treatment of neuroblastoma cells with inhibitors of MCT1 and LDHA, the enzyme responsible for lactate production, resulted in a large increase in intracellular pyruvate and was highly synergistic in decreasing neuroblastoma cell viability. These results highlight the potential of targeting MCT1 in neuroblastoma in conjunction with strategies that involve disruption of pyruvate homeostasis and indicate possible resistance mechanisms.


Asunto(s)
Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Transportadores de Ácidos Monocarboxílicos , Proteínas de Neoplasias , Neuroblastoma , Simportadores , Vincristina/farmacocinética , Animales , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Femenino , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Simportadores/antagonistas & inhibidores , Simportadores/genética , Simportadores/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Biochem Pharmacol ; 168: 237-248, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31302132

RESUMEN

Members of the ABC transporter family, particularly P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and multidrug resistance protein 1 (MRP1, ABCC1) are well characterized mediators of multidrug resistance, however their pharmacological inhibition has so far failed as a clinical strategy. Harnessing collateral sensitivity, a form of synthetic lethality where cells with acquired multidrug resistance exhibit hypersensitivity to unrelated agents, may be an alternative approach to targeting multidrug resistant tumour cells. We characterized a novel small molecule modulator that selectively enhanced MRP1-dependent efflux of reduced glutathione (GSH), an endogenous MRP1 substrate. Using cell lines expressing high levels of endogenous MRP1 from three difficult to treat cancer types-lung cancer, ovarian cancer and high-risk neuroblastoma-we showed that the MRP1 modulator substantially lowered intracellular GSH levels as a single agent. The effect was on-target, as MRP1 knockdown abolished GSH depletion. The MRP1 modulator was synergistic with the GSH synthesis inhibitor buthionine sulfoximine (BSO), with the combination exhausting intracellular GSH, increasing intracellular reactive oxygen species (ROS) and abolishing clonogenic capacity. Clonogenicity was rescued by the ROS scavenger N-acetylcysteine, implicating GSH depletion in the effect. The MRP1 modulator in combination with BSO also strongly sensitized cancer cells to MRP1-substrate chemotherapeutic agents, particularly arsenic trioxide, and was more effective than either the MRP1 modulator or BSO alone. GSH-depleting MRP1 modulators may therefore provide an enhanced therapeutic window to treat chemo-resistant MRP1-overexpressing pediatric and adult cancers.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Antineoplásicos Fitogénicos/administración & dosificación , Butionina Sulfoximina/administración & dosificación , Regulación Neoplásica de la Expresión Génica , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/biosíntesis , Células A549 , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Células HEK293 , Humanos , Células MCF-7 , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Vincristina/administración & dosificación
7.
Sci Transl Med ; 11(477)2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700572

RESUMEN

Amplification of the MYCN oncogene is associated with an aggressive phenotype and poor outcome in childhood neuroblastoma. Polyamines are highly regulated essential cations that are frequently elevated in cancer cells, and the rate-limiting enzyme in polyamine synthesis, ornithine decarboxylase 1 (ODC1), is a direct transcriptional target of MYCN. Treatment of neuroblastoma cells with the ODC1 inhibitor difluoromethylornithine (DFMO), although a promising therapeutic strategy, is only partially effective at impeding neuroblastoma cell growth due to activation of compensatory mechanisms resulting in increased polyamine uptake from the surrounding microenvironment. In this study, we identified solute carrier family 3 member 2 (SLC3A2) as the key transporter involved in polyamine uptake in neuroblastoma. Knockdown of SLC3A2 in neuroblastoma cells reduced the uptake of the radiolabeled polyamine spermidine, and DFMO treatment increased SLC3A2 protein. In addition, MYCN directly increased polyamine synthesis and promoted neuroblastoma cell proliferation by regulating SLC3A2 and other regulatory components of the polyamine pathway. Inhibiting polyamine uptake with the small-molecule drug AMXT 1501, in combination with DFMO, prevented or delayed tumor development in neuroblastoma-prone mice and extended survival in rodent models of established tumors. Our findings suggest that combining AMXT 1501 and DFMO with standard chemotherapy might be an effective strategy for treating neuroblastoma.


Asunto(s)
Progresión de la Enfermedad , Neuroblastoma/metabolismo , Neuroblastoma/patología , Poliaminas/metabolismo , Animales , Vías Biosintéticas/genética , Línea Celular Tumoral , Estudios de Cohortes , Modelos Animales de Enfermedad , Amplificación de Genes , Regulación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Transporte de Membrana/metabolismo , Ratones , Análisis Multivariante , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Pronóstico , Modelos de Riesgos Proporcionales , Análisis de Supervivencia , Resultado del Tratamiento
8.
Eur J Cancer ; 83: 132-141, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28735070

RESUMEN

The ATP-binding cassette transporter ABCC4 (multidrug resistance protein 4, MRP4) mRNA level is a strong predictor of poor clinical outcome in neuroblastoma which may relate to its export of endogenous signalling molecules and chemotherapeutic agents. We sought to determine whether ABCC4 contributes to development, growth and drug response in neuroblastoma in vivo. In neuroblastoma patients, high ABCC4 protein levels were associated with reduced overall survival. Inducible knockdown of ABCC4 strongly inhibited the growth of human neuroblastoma cells in vitro and impaired the growth of neuroblastoma xenografts. Loss of Abcc4 in the Th-MYCN transgenic neuroblastoma mouse model did not impact tumour formation; however, Abcc4-null neuroblastomas were strongly sensitised to the ABCC4 substrate drug irinotecan. Our findings demonstrate a role for ABCC4 in neuroblastoma cell proliferation and chemoresistance and provide rationale for a strategy where inhibition of ABCC4 should both attenuate the growth of neuroblastoma and sensitise tumours to ABCC4 chemotherapeutic substrates.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Camptotecina/análogos & derivados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/deficiencia , Neuroblastoma/tratamiento farmacológico , Animales , Western Blotting , Camptotecina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Doxiciclina/farmacología , Xenoinjertos/efectos de los fármacos , Irinotecán , Ratones , Ratones Noqueados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/fisiología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA