Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(13): 5987-5995, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38504492

RESUMEN

Sorption to activated carbon is a common approach to reducing environmental risks of waterborne perfluorooctanoic acid (PFOA), while effective and flexible approaches to PFOA sorption are needed. Variations in temperature or the use of electrokinetic phenomena (electroosmosis and electromigration) in the presence of external DC electric fields have been shown to alter the contaminant sorption of contaminants. Their role in PFOA sorption, however, remains unclear. Here, we investigated the joint effects of DC electric fields and the temperature on the sorption of PFOA on activated carbon. Temperature-dependent batch and column sorption experiments were performed in the presence and absence of DC fields, and the results were evaluated by using different kinetic sorption models. We found an emerging interplay of DC and temperature on PFOA sorption, which was linked via the liquid viscosity (η) of the electrolyte. For instance, the combined presence of a DC field and low temperature increased the PFOA loading up to 38% in 48 h relative to DC-free controls. We further developed a model that allowed us to predict temperature- and DC field strength-dependent electrokinetic benefits on the drivers of PFOA sorption kinetics (i.e., intraparticle diffusivity and the film mass transfer coefficient). Our insights may give rise to future DC- and temperature-driven applications for PFOA sorption, for instance, in response to fluctuating PFOA concentrations in contaminated water streams.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Temperatura , Carbón Orgánico , Adsorción , Fluorocarburos/análisis , Caprilatos , Cinética , Contaminantes Químicos del Agua/análisis
2.
Mar Life Sci Technol ; 6(2): 183-197, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38827131

RESUMEN

Histone modification and nucleosome assembly play important roles in chromatin-related processes. Histone chaperones form different complexes and coordinate histone transportation and assembly. Various histone chaperone complexes have been identified in different organisms. The ciliate protozoa (ciliates) have various chromatin structures and different nuclear morphology. However, histone chaperone components and functions of different subunits remain unclear in ciliates. Tetrahymema thermophila contains a transcriptionally active macronucleus (MAC) and a transcriptionally inactive micronucleus (MIC) which exhibit multiple replication and various chromatin remodeling progresses during vegetative growth and sexual developmental stages. Here, we found histone chaperone RebL1 not only localized evenly in the transcriptionally active MAC but also dynamically changed in the MIC during vegetative growth and sexual developmental stages. REBL1 knockdown inhibited cellular proliferation. The macronuclear morphology became bigger in growing mutants. The abnormal macronuclear structure also occurred in the starvation stage. Furthermore, micronuclear meiosis was disturbed during sexual development, leading to a failure to generate new gametic nuclei. RebL1 potentially interacted with various factors involved in histone-modifying complexes and chromatin remodeling complexes in different developmental stages. REBL1 knockdown affected expression levels of the genes involved in chromatin organization and transcription. Taken together, RebL1 plays a vital role in maintaining macronuclear structure stability and gametogenesis in T. thermophila. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00219-z.

3.
Sci Total Environ ; 947: 174713, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38997020

RESUMEN

The potential risk of heavy metals (HMs) to public health is an issue of great concern. Early prediction is an effective means to reduce the accumulation of HMs. The current prediction methods rarely take internal correlations between environmental factors into consideration, which negatively affects the accuracy of the prediction model and the interpretability of intrinsic mechanisms. Graph representation learning (GraRL) can simultaneously learn the attribute relationships between environmental factors and graph structural information. Herein, we developed the GraRL-HM method to predict the HM concentrations in soil-rice systems. The method consists of two modules, which are PeTPG and GCN-HM. In PeTPG, a graphic structure was generated using graph representation and communitization technology to explore the correlations and transmission paths of different environmental factors. Subsequently, the GCN-HM model based on the graph convolutional neural network (GCN) was used to predict the HM concentrations. The GraRL-HM method was validated by 2295 sets of data covering 21 environmental factors. The results indicated that the PeTPG model simplified correlation paths between factor nodes from 396 to 184, reducing by 53.5 % graph scale by eliminating the invalid paths. The concise and efficient graph structure enhanced the learning efficiency and representation accuracy of downstream prediction models. The GCN-HM model was superior to the four benchmark models in predicting the HM concentration in the crop, improving R2 by 36.1 %. This study develops a novel approach to improve the prediction accuracy of pollutant accumulation and provides valuable insights into intelligent regulation and planting guidance for heavy metal pollution control.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Redes Neurales de la Computación , Contaminantes del Suelo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Aprendizaje Automático , Oryza
4.
Cells ; 12(24)2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38132148

RESUMEN

Histones and DNA associate to form the nucleosomes of eukaryotic chromatin. Chromatin assembly factor 1 (CAF-1) complex and histone regulatory protein A (HIRA) complex mediate replication-couple (RC) and replication-independent (RI) nucleosome assembly, respectively. CHAF1B and HIRA share a similar domain but play different roles in nucleosome assembly by binding to the different interactors. At present, there is limited understanding for the similarities and differences in their respective functions. Tetrahymena thermophila contains transcriptionally active polyploid macronuclei (MAC) and transcriptionally silent diploid micronuclei (MIC). Here, the distribution patterns of Caf1b and Hir1 exhibited both similarities and distinctions. Both proteins localized to the MAC and MIC during growth, and to the MIC during conjugation. However, Hir1 exhibited additional signaling on parental MAC and new MAC during sexual reproduction and displayed a punctate signal on developing anlagen. Caf1b and Hir1 only co-localized in the MIC with Pcna1 during conjugation. Knockdown of CAF1B impeded cellular growth and arrested sexual reproductive development. Loss of HIR1 led to MIC chromosome defects and aborted sexual development. Co-interference of CAF1B and HIR1 led to a more severe phenotype. Moreover, CAF1B knockdown led to the up-regulation of HIR1 expression, while knockdown of HIR1 also led to an increase in CAF1B expression. Furthermore, Caf1b and Hir1 interacted with different interactors. These results showed that CAF-1 and Hir1 have independent and complementary functions for chromatin assembly in T. thermophila.


Asunto(s)
Nucleosomas , Tetrahymena thermophila , Nucleosomas/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Histonas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA