Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Regen Med ; 17(9): 659-675, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35703020

RESUMEN

Cartilage defects trouble millions of patients worldwide and their repair via conventional treatment is difficult. Excitingly, tissue engineering technology provides a promising strategy for efficient cartilage regeneration with structural regeneration and functional reconstruction. Seed cells, as biological prerequisites for cartilage regeneration, determine the quality of regenerated cartilage. The proliferation, differentiation and chondrogenesis of seed cells are greatly affected by their type, origin and generation. Thus, a systematic description of the characteristics of seed cells is necessary. This article reviews in detail the cellular characteristics, research progress, clinical translation challenges and future research directions of seed cells while providing guidelines for selecting appropriate seed cells for cartilage regeneration.


Cartilage defects affect millions of patients worldwide and their repair via conventional treatment is quite difficult. Excitingly, tissue engineering technology provides a promising strategy for efficient cartilage regeneration. The seed cell, as a biological prerequisite for cartilage regeneration, determines the quality of regenerated cartilage. This article reviews in detail the cellular characteristics, research progress, clinical translation challenges and future research directions of various chondrocytes, chondroprogenitor cells and stem cells. Chondrocytes, especially elastic chondrocytes, could complete subcutaneous cartilage regeneration, whereas stem cells are superior for composite defects, allografts and cartilage defects caused by inflammation. In brief, this article provides a guide for selecting appropriate seed cells for cartilage regeneration.


Asunto(s)
Cartílago Articular , Células Madre Mesenquimatosas , Cartílago , Diferenciación Celular , Condrocitos , Condrogénesis , Humanos , Regeneración , Ingeniería de Tejidos , Andamios del Tejido
2.
ACS Appl Mater Interfaces ; 14(37): 42388-42401, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36094886

RESUMEN

Tissue engineering technology provides a promising approach for large-scale bone reconstruction in cases of extensive chest wall defects. However, previous studies did not consider meticulous scaffold design specific to large-scale rib regeneration in terms of three-dimensional (3D) shape, proper porous structures, enough mechanical strength, and osteogenic microenvironments. Thus, there is an urgent need to develop an appropriate bone biomimetic scaffold (BBS) to address this problem. In this study, a BBS with controllable 3D morphology, appropriate mechanical properties, good biocompatibility and biodegradability, porous structure suitable for cell loading, and a biomimetic osteogenic inorganic salt (OIS) microenvironment was successfully prepared by integrating computer-aided design, 3D-printing, cast-molding, and freeze-drying technologies. The addition of the OIS in the scaffold substantially promoted ectopic bone regeneration in vivo, which might be attributed to the activation of osteogenic and angiogenic signaling pathways as well as upregulated expression of osteogenic genes. More importantly, dual long rib defects could be successfully repaired and medullary cavity recanalized by the rib-shaped mature cortical bone, which might be mediated by the activation of osteoclast signaling pathways. Thus, this paper presents a reliable BBS and proposes a new strategy for the repair of large-scale bone defects.


Asunto(s)
Biomimética , Andamios del Tejido , Regeneración Ósea , Osteogénesis , Impresión Tridimensional , Costillas , Acero , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
3.
Mater Today Bio ; 17: 100489, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36388453

RESUMEN

The fabrication of biphasic cartilage-bone integrated scaffolds is an attractive alternative for osteochondral repair but has proven to be extremely challenging. Existing three-dimensional (3D) scaffolds are insufficient to accurately biomimic the biphasic cartilage-bone integrated microenvironment. Currently, photo-crosslinkable hydrogels based on tissue-specific decellularized extracellular matrix (dECM) have been considered as an important technique to fabricate biomimetic scaffolds, but so far there has been no breakthrough in the photo-crosslinkable hydrogel scaffolds with biphasic cartilage-bone biomimetic microenvironment. Here, we report a novel strategy for the preparation of biomimetic cartilage-bone integrated scaffolds based on photo-crosslinkable cartilage/bone-derived dECM hydrogels, which are able to reconstruct biphasic cartilage-bone biomimetic microenvironment. The biphasic cartilage-bone integrated scaffolds provided a 3D microenvironment for osteochondral regeneration. The cartilage biomimetic scaffolds, consisting of cartilage-derived dECM hydrogels, efficiently regulated chondrogenesis of bone marrow mesenchymal stem cells (BMSCs). The bone biomimetic scaffolds, composed of cartilage/bone-derived dECM hydrogels, first regulated chondrogenesis of BMSCs, followed by endochondral ossification over time. Taken together, the biphasic cartilage-bone integrated tissue could be successfully reconstructed by subcutaneous culture based on cartilage-bone bilayered structural design. Furthermore, the biphasic cartilage-bone biomimetic scaffolds (cell-free) achieved satisfactory cartilage-bone integrated regeneration in the osteochondral defects of rabbits' knee joints.

4.
Bioact Mater ; 14: 97-109, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35310359

RESUMEN

Physiological repair of large-sized bone defects is great challenging in clinic due to a lack of ideal grafts suitable for bone regeneration. Decalcified bone matrix (DBM) is considered as an ideal bone regeneration scaffold, but low cell seeding efficiency and a poor osteoinductive microenvironment greatly restrict its application in large-sized bone regeneration. To address these problems, we proposed a novel strategy of bone regeneration units (BRUs) based on microgels produced by photo-crosslinkable and microfluidic techniques, containing both the osteogenic ingredient DBM and vascular endothelial growth factor (VEGF) for accurate biomimic of an osteoinductive microenvironment. The physicochemical properties of microgels could be precisely controlled and the microgels effectively promoted adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BRUs were successfully constructed by seeding BMSCs onto microgels, which achieved reliable bone regeneration in vivo. Finally, by integrating the advantages of BRUs in bone regeneration and the advantages of DBM scaffolds in 3D morphology and mechanical strength, a BRU-loaded DBM framework successfully regenerated bone tissue with the desired 3D morphology and effectively repaired a large-sized bone defect of rabbit tibia. The current study developed an ideal bone biomimetic microcarrier and provided a novel strategy for bone regeneration and large-sized bone defect repair.

5.
J Colloid Interface Sci ; 603: 94-109, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34197994

RESUMEN

To achieve optimal functional recovery of articular cartilage, scaffolds with nanofibrous structure and biological function have been widely pursued. In this study, two-dimensional electrospun poly(l-lactide-co-ε-caprolactone)/silk fibroin (PLCL/SF) scaffolds (2DS) were fabricated by dynamic liquid support (DLS) electrospinning system, and then cross-linked with hyaluronic acid (HA) to further mimic the microarchitecture of native cartilage. Subsequently, three-dimensional PLCL/SF scaffolds (3DS) and HA-crosslinked three-dimensional scaffolds (3DHAS) were successfully fabricated by in situ gas foaming and freeze-drying. 3DHAS exhibited better mechanical properties than that of the 3DS. Moreover, all scaffolds exhibited excellent biocompatibility in vitro. 3DHAS showed better proliferation and phenotypic maintenance of chondrocytes as compared to the other scaffolds. Histological analysis of cell-scaffold constructs explanted 8 weeks after implantation demonstrated that both 3DS and 3DHAS scaffolds formed cartilage-like tissues, and the cartilage lacuna formed in 3DHAS scaffolds was more mature. Moreover, the reparative capacity of scaffolds was discerned after implantation in the full-thickness articular cartilage model in rabbits for up to 12 weeks. The macroscopic and histological results exhibited typical cartilage-like character and well-integrated boundary between 3DHAS scaffolds and the host tissues. Collectively, biomimetic 3DHAS scaffolds may be promising candidates for cartilage tissue regeneration applications.


Asunto(s)
Cartílago Articular , Nanofibras , Animales , Poliésteres , Porosidad , Conejos , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA