Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36868220

RESUMEN

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Asunto(s)
Euphausiacea , Genoma , Animales , Relojes Circadianos/genética , Ecosistema , Euphausiacea/genética , Euphausiacea/fisiología , Genómica , Análisis de Secuencia de ADN , Elementos Transponibles de ADN , Evolución Biológica , Adaptación Fisiológica
2.
BMC Genomics ; 21(1): 745, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109079

RESUMEN

BACKGROUND: Temperature is known to affect living organisms and alter the expression of responsive genes, which affects a series of life processes, such as development, reproduction and metabolism. Several genes and gene families have been involved in high temperature responses, such as heat shock protein (hsp) family, Jumonji family and genes related to cortisol synthesis. Gonad is a vital organ related to the existence of a species. However, the comprehensive understanding of gonadal responses to environmental temperature is limited. RESULTS: To explore the effects of environmental temperature on genes and gene networks in gonads, we performed acute heat treatment (48 h) on Chinese tongue sole (Cynoglossus semilaevis). Gonadal transcriptome analysis was conducted on females, pseudomales and males exposed to high (28 °C) and normal (22 °C) temperatures. A total of 1226.24 million clean reads were obtained from 18 libraries. Principal component analysis (PCA) and differentially expressed gene (DEG) analysis revealed different performance of sex responses to heat stress. There were 4565, 790 and 1117 specific genes altered their expression level in females, pseudomales and males, respectively. Of these, genes related to hsp gene family, cortisol synthesis and metabolism and epigenetic regulation were involved in early heat response. Furthermore, a total of 1048 DEGs were shared among females, pesudomales and males, which may represent the inherent difference between high and normal temperatures. Genes, such as eef1akmt3, eef1akmt4, pnmt and hsp family members, were found. CONCLUSIONS: Our results depicted for the first time the gonadal gene expression under acute high temperature treatment in Chinese tongue sole. The findings may provide a clue for understanding the responses of genes and networks to environmental temperature.


Asunto(s)
Epigénesis Genética , Peces Planos , Respuesta al Choque Térmico , Animales , China , Femenino , Peces Planos/genética , Perfilación de la Expresión Génica , Respuesta al Choque Térmico/genética , Masculino
3.
Genes (Basel) ; 15(5)2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38790234

RESUMEN

It is widely known that all-female fish production holds economic value for aquaculture. Sebastes schlegelii, a preeminent economic species, exhibits a sex dimorphism, with females surpassing males in growth. In this regard, achieving all-female black rockfish production could significantly enhance breeding profitability. In this study, we utilized the widely used male sex-regulating hormone, 17α-methyltestosterone (MT) at three different concentrations (20, 40, and 60 ppm), to produce pseudomales of S. schlegelii for subsequent all-female offspring breeding. Long-term MT administration severely inhibits the growth of S. schlegelii, while short term had no significant impact. Histological analysis confirmed sex reversal at all MT concentrations; however, both medium and higher MT concentrations impaired testis development. MT also influenced sex steroid hormone levels in pseudomales, suppressing E2 while increasing T and 11-KT levels. In addition, a transcriptome analysis revealed that MT down-regulated ovarian-related genes (cyp19a1a and foxl2) while up-regulating male-related genes (amh) in pseudomales. Furthermore, MT modulated the TGF-ß signaling and steroid hormone biosynthesis pathways, indicating its crucial role in S. schlegelii sex differentiation. Therefore, the current study provides a method for achieving sexual reversal using MT in S. schlegelii and offers an initial insight into the underlying mechanism of sexual reversal in this species.


Asunto(s)
Metiltestosterona , Diferenciación Sexual , Animales , Metiltestosterona/farmacología , Masculino , Femenino , Diferenciación Sexual/efectos de los fármacos , Perciformes/genética , Perciformes/crecimiento & desarrollo , Perciformes/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/crecimiento & desarrollo , Peces/genética , Peces/crecimiento & desarrollo , Peces/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo
4.
Animals (Basel) ; 14(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38200815

RESUMEN

As a common influencing factor in the environment, temperature greatly influences the fish that live in the water all their life. The essential economic fish Chinese tongue sole (Cynoglossus semilaevis), a benthic fish, will experience both physiological and behavioral changes due to increases in temperature. The brain, as the central hub of fish and a crucial regulatory organ, is particularly sensitive to temperature changes and will be affected. However, previous research has mainly concentrated on the impact of temperature on the gonads of C. semilaevis. Instead, our study examines the brain using transcriptomics to investigate specific genes and pathways that can quickly respond to temperature changes. The fish were subjected to various periods of heat stress (1 h, 2 h, 3 h, and 5 h) before extracting the brain for transcriptome analysis. After conducting transcriptomic analyses, we identified distinct genes and pathways in males and females. The pathways were mainly related to cortisol synthesis and secretion, neuroactive ligand-receptor interactions, TGF beta signaling pathway, and JAK/STAT signaling pathway, while the genes included the HSP family, tshr, c-fos, c-jun, cxcr4, camk2b, and igf2. Our study offers valuable insights into the regulation mechanisms of the brain's response to temperature stress.

5.
Animals (Basel) ; 12(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35565570

RESUMEN

Pathogenic infection of fishes is an important constraining factor affecting marine aquaculture. Insufficient understanding of the molecular mechanisms has affected the diagnosis and corresponding treatment. Here, we reported the dynamic changes of gene expression patterns in the Chinese tongue sole kidney at 16 h, 48 h, 72 h and 96 h after Vibrio harveyi infection. In total, 366, 214, 115 and 238 differentially expressed genes were obtained from the 16 h-vs. -C, 48 h-vs. -C, 72 h-vs. -C and 96 h-vs. -C group comparisons, respectively. KEGG enrichment analysis revealed rapid up-regulation of several immune-related pathways, including IL-17, TNF and TLR signaling pathway. More importantly, time-series analyses of transcriptome showed that immune genes were specifically up-regulated in a short period of time and then decreased. The expression levels of chemokines increased after infection and reached a peak at 16 h. Specifically, Jak-STAT signaling pathway played a crucial role in the regulation during Vibrio harveyi infection. In the later stages of infection, genes in the neuroendocrine pathway, such as glucocorticoid-related genes, were activated in the kidney, indicating a close connection between the immune system and neuroendocrine system. Our dynamic transcriptome analyses provided profound insight into the gene expression profile and investigation of immunogenetic mechanisms of Chinese tongue sole.

6.
Genes (Basel) ; 12(10)2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34680958

RESUMEN

The maternal-to-zygotic transition (MZT) is a crucial event in embryo development. While the features of the MZT across species are shared, the stage of this transition is different among species. We characterized MZT in a flatfish species, Japanese flounder (Paralichthys olivaceus). In this study, we analyzed the 551.57 GB transcriptome data of two types of gametes (sperms and eggs) and 10 embryo developmental stages in Japanese flounder. We identified 2512 maternal factor-related genes and found that most of those maternal factor-related genes expression decreased at the low blastula (LB) stage and remained silent in the subsequent embryonic development period. Meanwhile, we verified that the zygotic genome transcription might occur at the 128-cell stage and large-scale transcription began at the LB stage, which indicates the LB stage is the major wave zygotic genome activation (ZGA) occurs. In addition, we indicated that the Wnt signaling pathway, playing a diverse role in embryonic development, was involved in the ZGA and the axis formation. The results reported the list of the maternal genes in Japanese flounder and defined the stage of MZT, contributing to the understanding of the details of MZT during Japanese flounder embryonic development.


Asunto(s)
Lenguado/genética , Células Germinativas/metabolismo , Transcriptoma , Animales , Blástula/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Lenguado/embriología , Lenguado/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/citología , Vía de Señalización Wnt
7.
Front Genet ; 12: 825742, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126476

RESUMEN

Yellowtail kingfish (Seriola lalandi) is a pelagic marine piscivore with a circumglobal distribution. It is particularly suitable for open ocean aquaculture owing to its large body size, fast swimming, rapid growth, and high economic value. A high-precision genome is of great significance for future genetic breeding research and large-scale aquaculture in the open ocean. PacBio, Illumina, and Hi-C data were combined to assemble chromosome-level reference genome with the size of 648.34 Mb (contig N50: 28.52 Mb). 175 contigs was anchored onto 24 chromosomes with lengths ranging from 12.28 to 34.59 Mb, and 99.79% of the whole genome sequence was covered. The BUSCOs of genome and gene were 94.20 and 95.70%, respectively. Gene families associated with adaptive behaviors, such as olfactory receptors and HSP70 gene families, expanded in the genome of S. lalandi. An analysis of selection pressure revealed 652 fast-evolving genes, among which mkxb, popdc2, dlx6, and ifitm5 may be related to rapid growth traits. The data generated in this study provide a valuable resource for understanding the genetic basis of S. lalandi traits.

8.
PeerJ ; 7: e7781, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31737440

RESUMEN

Flatfish undergo extreme morphological development and settle to a benthic in the adult stage, and are likely to be more susceptible to environmental stress. Heat shock proteins 70 (hsp70) are involved in embryonic development and stress response in metazoan animals. However, the evolutionary history and functions of hsp70 in flatfish are poorly understood. Here, we identified 15 hsp70 genes in the genome of Japanese flounder (Paralichthys olivaceus), a flatfish endemic to northwestern Pacific Ocean. Gene structure and motifs of the Japanese flounder hsp70 were conserved, and there were few structure variants compared to other fish species. We constructed a maximum likelihood tree to understand the evolutionary relationship of the hsp70 genes among surveyed fish. Selection pressure analysis suggested that four genes, hspa4l, hspa9, hspa13, and hyou1, showed signs of positive selection. We then extracted transcriptome data on the Japanese flounder with Edwardsiella tarda to induce stress, and found that hspa9, hspa12b, hspa4l, hspa13, and hyou1 were highly expressed, likely to protect cells from stress. Interestingly, expression patterns of hsp70 genes were divergent in different developmental stages of the Japanese flounder. We found that at least one hsp70 gene was always highly expressed at various stages of embryonic development of the Japanese flounder, thereby indicating that hsp70 genes were constitutively expressed in the Japanese flounder. Our findings provide basic and useful resources to better understand hsp70 genes in flatfish.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA