Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 32(27)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33765660

RESUMEN

Both poor electron conductivity and low ion diffusion of electrode materials are two main issues limiting the rate performance of pseudocapacitors. The present work reports the design and fabrication of hierarchically nano-architectured electrodes consisting of sulfide vacancies enhanced Ni-Co-S nanoparticle covering bent nickel nano-forest (BNNF). We propose new insight into vastly increased ion-accessible active sites and fast charge storage/delivery enhanced the reaction kinetics. The Ni-Co-S@BNNF electrode exhibits extremely high rate performance with 90.1% capacity retention from 1 to 20 A g-1, and even still remains 83.6% capacity at 40 A g-1, much superior to reported NiCo2S4-based electrodes. The high rate performance is attributed to the unique nano-architecture providing increased ion availability of electrochemically active sites and high conductivity for fast electron transport. Especially the electrode achieves remarkable long-term cycle stability with more than 100% initial capacity value after 5000 cycles at 5 A g-1and exhibits excellent cycle reversibility even at 20 A g-1. Goog cycle stability should be attributed to the sulfide vacancies in Ni-Co-S nano-branches and the electrode architecture sustaining structural strain during fast redox reactions. An asymmetric pseudocapacitor applying such electrode achieves a high energy density of 99.9 W h kg-1and exhibits superior cycling stability at a high current density of 20 A g-1. This study underscores the potential importance of developing nanoarrays covered with highly redox-active materials with increasing ions/charge kinetics for energy storage.

2.
Micromachines (Basel) ; 15(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39064327

RESUMEN

Retroreflectors are an important optical component, but current retroreflector structures and manufacturing processes are relatively complex. This paper proposes a rapid, low-cost, large-area method for fabricating retroreflectors based on microlens arrays. Tunable microlens arrays with adjustable curvature, fill factor, and sizes were prepared using photolithography and thermal reflow techniques. Subsequently, a two-step nanoimprinting process was used to create a flexible reverse mold and transfer the structure onto the desired substrate. The microlens arrays, with a diameter of 30 µm, a period of 33 µm, a curvature radius ranging from 15.5 to 18.8 µm, and a fill factor ranging from 75.1% to 88.8%, were fabricated this way. In addition, the method also fabricated microlens arrays with diameters ranging from 10 to 80 µm. Retroreflectors were made by sputtering a layer of silver on the MLAs as a reflecting layer, and tests showed that the microlens-based retroreflector exhibited superior retroreflective performance with a wide-angle response of ±75°. Microlens-based retroreflectors have the advantages of simple operation and controllable profiles. The fabrication method in this paper is suitable for large-scale production, providing a new approach to retroreflector design.

3.
ACS Appl Mater Interfaces ; 12(13): 14797-14805, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32160750

RESUMEN

Nanoimprint lithography presents a new strategy for preparing uniform nanostructures with predefined sizes and shapes and has the potential for developing nanosized drug delivery systems. However, the current nanoimprint lithography is a type of an additive nanofabrication method that has limited potential due to its restricted template-dependent innate character. Herein, we have developed a novel subtractive UV-nanoimprint lithography (sUNL) for the scalable fabrication of PLGA nanostructures with variable sizes for the first time. sUNL can not only fabricate a variety of predefined nanostructures by simply utilizing different nanoimprint molds but also precisely prepare scalable nanocylinders with different length to diameter ratios. Particularly, sUNL can fabricate paclitaxel-loaded PLGA nanocylinders (PTX-PLGA NCs) with high drug-loading rate of 40% and long storage stability over a year. We demonstrate that PTX-PLGA NCs target clathrin- and caveolae-mediated cell transport pathways and display increased cellular uptake, in comparison to traditional PTX-loaded PLGA nanoparticles (PTX-PLGA NPs), leading to enhanced anticancer effects. Therefore, sUNL represents a promising nanofabrication method for efficiently developing predefined drug delivery systems.


Asunto(s)
Antineoplásicos Fitogénicos/química , Bioimpresión , Portadores de Fármacos/química , Nanoestructuras/química , Paclitaxel/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Antineoplásicos Fitogénicos/metabolismo , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Clatrina/química , Clatrina/metabolismo , Liberación de Fármacos , Estabilidad de Medicamentos , Humanos , Células MCF-7 , Paclitaxel/metabolismo , Paclitaxel/farmacología
4.
ACS Nano ; 14(10): 12719-12731, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32936616

RESUMEN

Pseudocapacitance holds great promise for energy density improvement of supercapacitors, but electrode materials show practical capacity far below theoretical values due to limited ion diffusion accessibility and/or low electron transferability. Herein, inducing two kinds of straight ion-movement channels and fast charge storage/delivery for enhanced reaction kinetics is proposed. Very thick electrodes consisting of vertically aligned and ordered arrays of NiCo2S4-nanoflake-covered slender nickel columns (NCs) are achieved via a scalable route. The vertical standing ∼5 nm ultrathin NiCo2S4 flakes build a porous covering with straight ion channels without the "dead volume", leading to thickness-independent capacity. Benefiting from the architecture acting as a "superhighway" for ultrafast ion/electron transport and providing a large surface area, high electrical conductivity, and abundant availability of electrochemical active sites, the NiCo2S4@NC-array electrode achieves a specific capacity up to 486.9 mAh g-1. The electrode even can work with a high specific capacity of 150 mAh g-1 at a very high current density of 100 A g-1. In particular, due to the advanced structure features, the electrode exhibits excellent flexibility with a unexpected improvement of capacity when being largely bent and excellent cycling stability with an obvious resistance decrease after the cycles. An asymmetric pseudocapacitor applying the NiCo2S4@NC-array as a positive electrode achieves an energy density of 66.5 Wh kg-1 at a power density of 400 W kg-1, superior to the most reported values for asymmetric devices with NiCo2S4 electrodes. This work provides a scalable approach with mold-replication-like simplicity toward achieving thickness-independent electrodes with ultrafast ion/electron transport for energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA