Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Nat Immunol ; 21(11): 1359-1370, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32929274

RESUMEN

Elucidating the mechanisms that sustain asthmatic inflammation is critical for precision therapies. We found that interleukin-6- and STAT3 transcription factor-dependent upregulation of Notch4 receptor on lung tissue regulatory T (Treg) cells is necessary for allergens and particulate matter pollutants to promote airway inflammation. Notch4 subverted Treg cells into the type 2 and type 17 helper (TH2 and TH17) effector T cells by Wnt and Hippo pathway-dependent mechanisms. Wnt activation induced growth and differentiation factor 15 expression in Treg cells, which activated group 2 innate lymphoid cells to provide a feed-forward mechanism for aggravated inflammation. Notch4, Wnt and Hippo were upregulated in circulating Treg cells of individuals with asthma as a function of disease severity, in association with reduced Treg cell-mediated suppression. Our studies thus identify Notch4-mediated immune tolerance subversion as a fundamental mechanism that licenses tissue inflammation in asthma.


Asunto(s)
Asma/etiología , Asma/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Receptor Notch4/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Alérgenos/inmunología , Análisis de Varianza , Asma/diagnóstico , Biomarcadores , Susceptibilidad a Enfermedades , Expresión Génica , Vía de Señalización Hippo , Humanos , Tolerancia Inmunológica , Inmunofenotipificación , Proteínas Serina-Treonina Quinasas/metabolismo , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vía de Señalización Wnt
3.
Nat Immunol ; 20(9): 1208-1219, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31384057

RESUMEN

Regulatory T cells (Treg cells) deficient in the transcription factor Foxp3 lack suppressor function and manifest an effector T (Teff) cell-like phenotype. We demonstrate that Foxp3 deficiency dysregulates metabolic checkpoint kinase mammalian target of rapamycin (mTOR) complex 2 (mTORC2) signaling and gives rise to augmented aerobic glycolysis and oxidative phosphorylation. Specific deletion of the mTORC2 adaptor gene Rictor in Foxp3-deficient Treg cells ameliorated disease in a Foxo1 transcription factor-dependent manner. Rictor deficiency re-established a subset of Treg cell genetic circuits and suppressed the Teff cell-like glycolytic and respiratory programs, which contributed to immune dysregulation. Treatment of Treg cells from patients with FOXP3 deficiency with mTOR inhibitors similarly antagonized their Teff cell-like program and restored suppressive function. Thus, regulatory function can be re-established in Foxp3-deficient Treg cells by targeting their metabolic pathways, providing opportunities to restore tolerance in Treg cell disorders.


Asunto(s)
Reprogramación Celular/inmunología , Factores de Transcripción Forkhead/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Linfocitos T Reguladores/inmunología , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Glucólisis/fisiología , Humanos , Masculino , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación Oxidativa , Transducción de Señal , Linfocitos T Reguladores/citología
4.
Immunity ; 54(6): 1186-1199.e7, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33915108

RESUMEN

A cardinal feature of COVID-19 is lung inflammation and respiratory failure. In a prospective multi-country cohort of COVID-19 patients, we found that increased Notch4 expression on circulating regulatory T (Treg) cells was associated with disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice normalized the dysregulated innate immunity and rescued disease morbidity and mortality induced by a synthetic analog of viral RNA or by influenza H1N1 virus. Mechanistically, Notch4 suppressed the induction by interleukin-18 of amphiregulin, a cytokine necessary for tissue repair. Protection by Notch4 inhibition was recapitulated by therapy with Amphiregulin and, reciprocally, abrogated by its antagonism. Amphiregulin declined in COVID-19 subjects as a function of disease severity and Notch4 expression. Thus, Notch4 expression on Treg cells dynamically restrains amphiregulin-dependent tissue repair to promote severe lung inflammation, with therapeutic implications for COVID-19 and related infections.


Asunto(s)
Interacciones Huésped-Patógeno , Inmunidad Celular , Neumonía Viral/etiología , Neumonía Viral/metabolismo , Receptor Notch4/metabolismo , Transducción de Señal , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Anfirregulina/farmacología , Animales , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunohistoquímica , Inmunomodulación/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Virus de la Influenza A/fisiología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Ratones , Ratones Transgénicos , Neumonía Viral/patología , Receptor Notch4/antagonistas & inhibidores , Receptor Notch4/genética , Índice de Severidad de la Enfermedad
5.
Immunity ; 53(6): 1202-1214.e6, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33086036

RESUMEN

The mechanisms by which regulatory T (Treg) cells differentially control allergic and autoimmune responses remain unclear. We show that Treg cells in food allergy (FA) had decreased expression of transforming growth factor beta 1 (TGF-ß1) because of interleukin-4 (IL-4)- and signal transducer and activator of transciription-6 (STAT6)-dependent inhibition of Tgfb1 transcription. These changes were modeled by Treg cell-specific Tgfb1 monoallelic inactivation, which induced allergic dysregulation by impairing microbiota-dependent retinoic acid receptor-related orphan receptor gamma t (ROR-γt)+ Treg cell differentiation. This dysregulation was rescued by treatment with Clostridiales species, which upregulated Tgfb1 expression in Treg cells. Biallelic deficiency precipitated fatal autoimmunity with intense autoantibody production and dysregulated T follicular helper and B cell responses. These results identify a privileged role of Treg cell-derived TGF-ß1 in regulating allergy and autoimmunity at distinct checkpoints in a Tgfb1 gene dose- and microbiota-dependent manner.


Asunto(s)
Autoinmunidad/inmunología , Hipersensibilidad/inmunología , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta1/inmunología , Adolescente , Animales , Autoinmunidad/genética , Linfocitos B/inmunología , Diferenciación Celular , Niño , Preescolar , Hipersensibilidad a los Alimentos/inmunología , Dosificación de Gen , Humanos , Hipersensibilidad/genética , Inmunoglobulina G/inmunología , Lactante , Mastocitos/inmunología , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Células T Auxiliares Foliculares/inmunología , Linfocitos T Reguladores/metabolismo , Transcripción Genética , Factor de Crecimiento Transformador beta1/genética , Adulto Joven
8.
J Allergy Clin Immunol ; 151(5): 1296-1306.e7, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36690254

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is characterized by TH2-dominated skin inflammation and systemic response to cutaneously encountered antigens. The TH2 cytokines IL-4 and IL-13 play a critical role in the pathogenesis of AD. The Q576->R576 polymorphism in the IL-4 receptor alpha (IL-4Rα) chain common to IL-4 and IL-13 receptors alters IL-4 signaling and is associated with asthma severity. OBJECTIVE: We sought to investigate whether the IL-4Rα R576 polymorphism is associated with AD severity and exaggerates allergic skin inflammation in mice. METHODS: Nighttime itching interfering with sleep, Rajka-Langeland, and Eczema Area and Severity Index scores were used to assess AD severity. Allergic skin inflammation following epicutaneous sensitization of mice 1 or 2 IL-4Rα R576 alleles (QR and RR) and IL-4Rα Q576 (QQ) controls was assessed by flow cytometric analysis of cells and quantitative RT-PCR analysis of cytokines in skin. RESULTS: The frequency of nighttime itching in 190 asthmatic inner-city children with AD, as well as Rajka-Langeland and Eczema Area and Severity Index scores in 1116 White patients with AD enrolled in the Atopic Dermatitis Research Network, was higher in subjects with the IL-4Rα R576 polymorphism compared with those without, with statistical significance for the Rajka-Langeland score. Following epicutaneous sensitization of mice with ovalbumin or house dust mite, skin infiltration by CD4+ cells and eosinophils, cutaneous expression of Il4 and Il13, transepidermal water loss, antigen-specific IgE antibody levels, and IL-13 secretion by antigen-stimulated splenocytes were significantly higher in RR and QR mice compared with QQ controls. Bone marrow radiation chimeras demonstrated that both hematopoietic cells and stromal cells contribute to the mutants' exaggerated allergic skin inflammation. CONCLUSIONS: The IL-4Rα R576 polymorphism predisposes to more severe AD and increases allergic skin inflammation in mice.


Asunto(s)
Dermatitis Atópica , Eccema , Ratones , Animales , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Células Th2 , Piel/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Prurito/metabolismo , Eccema/metabolismo
9.
Allergy ; 78(5): 1245-1257, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36458896

RESUMEN

BACKGROUND: Early-life exposure to certain environmental bacteria including Acinetobacter lwoffii (AL) has been implicated in protection from chronic inflammatory diseases including asthma later in life. However, the underlying mechanisms at the immune-microbe interface remain largely unknown. METHODS: The effects of repeated intranasal AL exposure on local and systemic innate immune responses were investigated in wild-type and Il6-/- , Il10-/- , and Il17-/- mice exposed to ovalbumin-induced allergic airway inflammation. Those investigations were expanded by microbiome analyses. To assess for AL-associated changes in gene expression, the picture arising from animal data was supplemented by in vitro experiments of macrophage and T-cell responses, yielding expression and epigenetic data. RESULTS: The asthma preventive effect of AL was confirmed in the lung. Repeated intranasal AL administration triggered a proinflammatory immune response particularly characterized by elevated levels of IL-6, and consequently, IL-6 induced IL-10 production in CD4+ T-cells. Both IL-6 and IL-10, but not IL-17, were required for asthma protection. AL had a profound impact on the gene regulatory landscape of CD4+ T-cells which could be largely recapitulated by recombinant IL-6. AL administration also induced marked changes in the gastrointestinal microbiome but not in the lung microbiome. By comparing the effects on the microbiota according to mouse genotype and AL-treatment status, we have identified microbial taxa that were associated with either disease protection or activity. CONCLUSION: These experiments provide a novel mechanism of Acinetobacter lwoffii-induced asthma protection operating through IL-6-mediated epigenetic activation of IL-10 production and with associated effects on the intestinal microbiome.


Asunto(s)
Asma , Microbiota , Animales , Ratones , Interleucina-10 , Administración Intranasal , Interleucina-6 , Modelos Animales de Enfermedad , Pulmón , Inflamación , Ratones Endogámicos BALB C , Ovalbúmina
10.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003329

RESUMEN

Lung infections are one of the most common causes of death and morbidity worldwide. Both bacterial and viral lung infections cause a vast number of infections with varying severities. Extracellular vesicles (EVs) produced by different cells due to infection in the lung have the ability to modify the immune system, leading to either better immune response or worsening of the disease. It has been shown that both bacteria and viruses have the ability to produce their EVs and stimulate the immune system for that. In this review, we investigate topics from EV biogenesis and types of EVs to lung bacterial and viral infections caused by various bacterial species. Mycobacterium tuberculosis, Staphylococcus aureus, and Streptococcus pneumoniae infections are covered intensively in this review. Moreover, various viral lung infections, including SARS-CoV-2 infections, have been depicted extensively. In this review, we focus on eukaryotic-cell-derived EVs as an important component of disease pathogenesis. Finally, this review holds high novelty in its findings and literature review. It represents the first time to cover all different information on immune-cell-derived EVs in both bacterial and viral lung infections.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Neumonía , Virosis , Humanos , Pulmón
11.
Allergy ; 77(11): 3377-3387, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35841382

RESUMEN

BACKGROUND: The mechanisms by which genetic and environmental factors interact to promote asthma remain unclear. Both the IL-4 receptor alpha chain R576 (IL-4RαR576) variant and Notch4 license asthmatic lung inflammation by allergens and ambient pollutant particles by subverting lung regulatory T (Treg ) cells in an IL-6-dependent manner. OBJECTIVE: We examined the interaction between IL-4RαR576 and Notch4 in promoting asthmatic inflammation. METHODS: Peripheral blood mononuclear cells (PBMCs) of asthmatics were analyzed for T helper type 2 cytokine production and Notch4 expression on Treg cells as a function of IL4RR576 allele. The capacity of IL-4RαR576 to upregulate Notch4 expression on Treg cells to promote severe allergic airway inflammation was further analyzed in genetic mouse models. RESULTS: Asthmatics carrying the IL4RR576 allele had increased Notch4 expression on their circulating Treg cells as a function of disease severity and serum IL-6. Mice harboring the Il4raR576 allele exhibited increased Notch4-dependent allergic airway inflammation that was inhibited upon Treg cell-specific Notch4 deletion or treatment with an anti-Notch4 antibody. Signaling via IL-4RαR576 upregulated the expression in lung Treg cells of Notch4 and its downstream mediators Yap1 and beta-catenin, leading to exacerbated lung inflammation. This upregulation was dependent on growth factor receptor-bound protein 2 (GRB2) and IL-6 receptor. CONCLUSION: These results identify an IL-4RαR576-regulated GRB2-IL-6-Notch4 circuit that promotes asthma severity by subverting lung Treg cell function.


Asunto(s)
Asma , Neumonía , Animales , Ratones , Asma/genética , Modelos Animales de Enfermedad , Inflamación , Interleucina-6/metabolismo , Leucocitos Mononucleares/metabolismo , Pulmón , Ratones Endogámicos BALB C , Neumonía/metabolismo , Receptores de Interleucina-4/metabolismo , Linfocitos T Reguladores
12.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628549

RESUMEN

Regulatory T cells (Tregs) control immune system activity and inhibit inflammation. While, in mice, short-chain fatty acids (SCFAs) are known to be essential regulators of naturally occurring and in vitro induced Tregs (iTregs), data on their contribution to the development of human iTregs are sparse, with no reports of the successful SCFAs-augmented in vitro generation of fully functional human iTregs. Likewise, markers undoubtedly defining human iTregs are missing. Here, we aimed to generate fully functional human iTregs in vitro using protocols involving SCFAs and to characterize the underlying mechanism. Our target was to identify the potential phenotypic markers best characterizing human iTregs. Naïve non-Treg CD4+ cells were isolated from the peripheral blood of 13 healthy adults and cord blood of 12 healthy term newborns. Cells were subjected to differentiation toward iTregs using a transforming growth factor ß (TGF-ß)-based protocol, with or without SCFAs (acetate, butyrate, or propionate). Thereafter, they were subjected to flow cytometric phenotyping or a suppression assay. During differentiation, cells were collected for chromatin-immunoprecipitation (ChIP)-based analysis of histone acetylation. The enrichment of the TGF-ß-based protocol with butyrate or propionate potentiated the in vitro differentiation of human naïve CD4+ non-Tregs towards iTregs and augmented the suppressive capacity of the latter. These seemed to be at least partly underlain by the effects of SCFAs on the histone acetylation levels in differentiating cells. GITR, ICOS, CD39, PD-1, and PD-L1 were proven to be potential markers of human iTregs. Our results might boost the further development of Treg-based therapies against autoimmune, allergic and other chronic inflammatory disorders.


Asunto(s)
Ácidos Grasos Volátiles , Propionatos , Linfocitos T Reguladores , Butiratos/metabolismo , Butiratos/farmacología , Diferenciación Celular , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/farmacología , Histonas/metabolismo , Humanos , Recién Nacido , Propionatos/metabolismo , Propionatos/farmacología , Linfocitos T Reguladores/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo
13.
J Allergy Clin Immunol ; 145(3): 897-906, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31669435

RESUMEN

BACKGROUND: Food allergy (FA) affects an increasing proportion of children for reasons that remain obscure. Novel disease biomarkers and curative treatment options are strongly needed. OBJECTIVE: We sought to apply untargeted metabolomic profiling to identify pathogenic mechanisms and candidate disease biomarkers in patients with FA. METHODS: Mass spectrometry-based untargeted metabolomic profiling was performed on serum samples of children with either FA alone, asthma alone, or both FA and asthma, as well as healthy pediatric control subjects. RESULTS: In this pilot study patients with FA exhibited a disease-specific metabolomic signature compared with both control subjects and asthmatic patients. In particular, FA was uniquely associated with a marked decrease in sphingolipid levels, as well as levels of a number of other lipid metabolites, in the face of normal frequencies of circulating natural killer T cells. Specific comparison of patients with FA and asthmatic patients revealed differences in the microbiota-sensitive aromatic amino acid and secondary bile acid metabolism. Children with both FA and asthma exhibited a metabolomic profile that aligned with that of FA alone but not asthma. Among children with FA, the history of severe systemic reactions and the presence of multiple FAs were associated with changes in levels of tryptophan metabolites, eicosanoids, plasmalogens, and fatty acids. CONCLUSIONS: Children with FA have a disease-specific metabolomic profile that is informative of disease mechanisms and severity and that dominates in the presence of asthma. Lower levels of sphingolipids and ceramides and other metabolomic alterations observed in children with FA might reflect the interplay between an altered microbiota and immune cell subsets in the gut.


Asunto(s)
Asma/sangre , Biomarcadores/sangre , Hipersensibilidad a los Alimentos/sangre , Metabolómica/métodos , Niño , Preescolar , Femenino , Humanos , Masculino , Metaboloma , Proyectos Piloto
14.
Clin Exp Allergy ; 50(1): 5-14, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31505066

RESUMEN

The Th2 cytokines interleukin 4 (IL-4) and IL-13 and the heterodimeric IL-4 receptor (IL-4R) complexes that they interact with play a key role in the pathogenesis of allergic disorders. Dupilumab is a humanized IgG4 monoclonal antibody that targets the IL-4 receptor alpha chain (IL-4Rα), common to both IL-4R complexes: type 1 (IL-4Rα/γc; IL-4 specific) and type 2 (IL-4Rα/IL-13Rα1; IL-4 and IL-13 specific). In this review, we detail the current state of knowledge of the different signalling pathways coupled to the IL-4R complexes and examine the possible mechanisms of Dupilumab action and survey its clinical efficacy in different allergic disorders. The development of Dupilumab and the widening spectrum of its clinical applications is relevant to the current emphasis on precision medicine approaches to the blockade of pathways involved in allergic diseases.


Asunto(s)
Antialérgicos/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Asma/tratamiento farmacológico , Dermatitis Atópica/tratamiento farmacológico , Esofagitis Eosinofílica/tratamiento farmacológico , Hipersensibilidad a los Alimentos/tratamiento farmacológico , Interleucina-13/inmunología , Subunidad alfa del Receptor de Interleucina-4/inmunología , Interleucina-4/inmunología , Anafilaxia/inmunología , Asma/inmunología , Enfermedad Crónica , Dermatitis Atópica/inmunología , Esofagitis Eosinofílica/inmunología , Hipersensibilidad a los Alimentos/inmunología , Humanos , Inflamación/inmunología , Subunidad alfa del Receptor de Interleucina-4/antagonistas & inhibidores , Pólipos Nasales/tratamiento farmacológico , Pólipos Nasales/inmunología , Rinitis Alérgica/tratamiento farmacológico , Rinitis Alérgica/inmunología , Factor de Transcripción STAT6/inmunología , Sinusitis/tratamiento farmacológico , Sinusitis/inmunología , Linfocitos T Reguladores/inmunología , Células Th2/inmunología
15.
J Allergy Clin Immunol ; 142(4): 1243-1256.e17, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29627423

RESUMEN

BACKGROUND: Exposure to traffic-related particulate matter promotes asthma and allergic diseases. However, the precise cellular and molecular mechanisms by which particulate matter exposure acts to mediate these effects remain unclear. OBJECTIVE: We sought to elucidate the cellular targets and signaling pathways critical for augmentation of allergic airway inflammation induced by ambient ultrafine particles (UFP). METHODS: We used in vitro cell-culture assays with lung-derived antigen-presenting cells and allergen-specific T cells and in vivo mouse models of allergic airway inflammation with myeloid lineage-specific gene deletions, cellular reconstitution approaches, and antibody inhibition studies. RESULTS: We identified lung alveolar macrophages (AM) as the key cellular target of UFP in promoting airway inflammation. Aryl hydrocarbon receptor-dependent induction of Jagged 1 (Jag1) expression in AM was necessary and sufficient for augmentation of allergic airway inflammation by UFP. UFP promoted TH2 and TH17 cell differentiation of allergen-specific T cells in a Jag1- and Notch 4-dependent manner. Treatment of mice with an anti-Notch 4 antibody abrogated exacerbation of allergic airway inflammation induced by UFP. CONCLUSION: UFP exacerbate allergic airway inflammation by promoting a Jag1-Notch 4-dependent interaction between AM and allergen-specific T cells, leading to augmented TH cell differentiation.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Proteína Jagged-1/inmunología , Macrófagos Alveolares/inmunología , Material Particulado/toxicidad , Receptor Notch4/inmunología , Hipersensibilidad Respiratoria/inmunología , Linfocitos T/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Células Presentadoras de Antígenos/inmunología , Inmunoglobulina G/inmunología , Ratones Endogámicos BALB C , Ratones Transgénicos , Receptor Notch4/antagonistas & inhibidores , Hipersensibilidad Respiratoria/tratamiento farmacológico
16.
Int J Mol Sci ; 20(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30823645

RESUMEN

Maternal diet modifies epigenetic programming in offspring, a potentially critical factor in the immune dysregulation of modern societies. We previously found that prenatal fish oil supplementation affects neonatal T-cell histone acetylation of genes implicated in adaptive immunity including PRKCZ, IL13, and TBX21. In this study, we measured H3 and H4 histone acetylation levels by chromatin immunoprecipitation in 173 term placentas collected in the prospective birth cohort, ALADDIN, in which information on lifestyle and diet is thoroughly recorded. In anthroposophic families, regular olive oil usage during pregnancy was associated with increased H3 acetylation at FOXP3 (p = 0.004), IL10RA (p = 0.008), and IL7R (p = 0.007) promoters, which remained significant after adjustment by offspring gender. Furthermore, maternal fish consumption was associated with increased H4 acetylation at the CD14 gene in placentas of female offspring (p = 0.009). In conclusion, prenatal olive oil intake can affect placental histone acetylation in immune regulatory genes, confirming previously observed pro-acetylation effects of olive oil polyphenols. The association with fish consumption may implicate ω-3 polyunsaturated fatty acids present in fish oil. Altered histone acetylation in placentas from mothers who regularly include fish or olive oil in their diets could influence immune priming in the newborn.


Asunto(s)
Aceites de Pescado/farmacología , Histonas/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Aceite de Oliva/farmacología , Placenta/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Femenino , Aceites de Pescado/administración & dosificación , Aceites de Pescado/metabolismo , Productos Pesqueros , Humanos , Inmunidad Innata/genética , Interleucina-13/genética , Interleucina-13/metabolismo , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Aceite de Oliva/administración & dosificación , Placenta/efectos de los fármacos , Embarazo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
17.
Eur J Immunol ; 47(5): 841-847, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28271497

RESUMEN

Schistosomiasis is a nontransplacental helminth infection. Chronic infection during pregnancy suppresses allergic airway responses in offspring. We addressed the question whether in utero exposure to chronic schistosome infection (Reg phase) in mice affects B-cell and T-cell development. Therefore, we focused our analyses on T-cell differentiation capacity induced by epigenetic changes in promoter regions of signature cytokines in offspring. Here, we show that naïve T cells from offspring of schistosome infected female mice had a strong capacity to differentiate into TH 1 cells, whereas TH 2 differentiation was impaired. In accordance, reduced levels of histone acetylation of the IL-4 promoter regions were observed in naïve T cells. To conclude, our mouse model revealed distinct epigenetic changes within the naïve T-cell compartment affecting TH 2 and TH 1 cell differentiation in offspring of mothers with chronic helminth infection. These findings could eventually help understand how helminths alter T-cell driven immune responses induced by allergens, bacterial or viral infections, as well as vaccines.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Activación de Linfocitos , Complicaciones Parasitarias del Embarazo/inmunología , Esquistosomiasis/inmunología , Linfocitos T/fisiología , Acetilación , Animales , Enfermedad Crónica , Citocinas/genética , Citocinas/inmunología , Femenino , Histonas/metabolismo , Interleucina-4/genética , Interleucina-4/inmunología , Ratones , Madres , Embarazo , Regiones Promotoras Genéticas , Esquistosomiasis/parasitología , Linfocitos T/inmunología , Células TH1/inmunología , Células TH1/fisiología , Células Th2/inmunología , Células Th2/fisiología
18.
Hippocampus ; 27(8): 906-919, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28500650

RESUMEN

Autism spectrum disorder (ASD) is a class of neurodevelopmental disorders characterized by persistent deficits in social communication/interaction, together with restricted/repetitive patterns of behavior. ASD is among the most heritable neuropsychiatric conditions, and while available evidence points to a complex set of genetic factors, the SHANK gene family has emerged as one of the most promising candidates. Here, we assessed ASD-related phenotypes with particular emphasis on social behavior and cognition in Shank1 mouse mutants in comparison to heterozygous and wildtype littermate controls across development in both sexes. While social approach behavior was evident in all experimental conditions and social recognition was only mildly affected by genotype, Shank1-/- null mutant mice were severely impaired in object recognition memory. This effect was particularly prominent in juveniles, not due to impairments in object discrimination, and replicated in independent mouse cohorts. At the neurobiological level, object recognition deficits were paralleled by increased brain-derived neurotrophic factor (BDNF) protein expression in the hippocampus of Shank1-/- mice; yet BDNF levels did not differ under baseline conditions. We therefore investigated changes in the epigenetic regulation of hippocampal BDNF expression and detected an enrichment of histone H3 acetylation at the Bdnf promoter1 in Shank1-/- mice, consistent with increased learning-associated BDNF. Together, our findings indicate that Shank1 deletions lead to an aberrant cognitive phenotype characterized by severe impairments in object recognition memory and increased hippocampal BDNF levels, possibly due to epigenetic modifications. This result supports the link between ASD and intellectual disability, and suggests epigenetic regulation as a potential therapeutic target.


Asunto(s)
Trastorno del Espectro Autista , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Trastornos del Conocimiento/etiología , Epigénesis Genética/genética , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Animales , Animales Recién Nacidos , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Peso Corporal/genética , Trastornos del Conocimiento/genética , Discriminación en Psicología/fisiología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Reconocimiento en Psicología/fisiología , Conducta Social , Vocalización Animal/fisiología
20.
Curr Opin Pediatr ; 28(6): 754-763, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27662207

RESUMEN

PURPOSE OF REVIEW: The goal of this review was to systematically analyze recent studies updating our knowledge on the role of epigenetic mechanisms in childhood asthma. RECENT FINDINGS: A systematic literature search was conducted that identified 23 fresh articles published within the last 5 years reporting the results of human studies on the relationships between epigenetic modifications and childhood asthma or its/related phenotypes. In almost all these studies, meaningful associations between levels of epigenetic marks (DNA methylation and/or histone modifications) and pediatric asthma or its/related phenotypes have been observed. In addition, many studies identified by our screening analyzed those associations in the context of environmental factors, such as pollution, tobacco smoke, farming, or diet, showing in a huge majority a modifying effect of those exposures. SUMMARY: The results of our systematic literature search provide a strong support for the role of epigenetic mechanisms in (mediating the effects of environmental exposure on) pediatric asthma. This knowledge may possibly be translated into diagnostic and/or therapeutic approaches.


Asunto(s)
Asma/genética , Epigénesis Genética , Niño , Metilación de ADN , Interacción Gen-Ambiente , Código de Histonas , Humanos , Fenotipo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA