Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 144(2): 227-39, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21215441

RESUMEN

Mitochondria import a large number of nuclear-encoded proteins via membrane-bound transport machineries; however, little is known about regulation of the preprotein translocases. We report that the main protein entry gate of mitochondria, the translocase of the outer membrane (TOM complex), is phosphorylated by cytosolic kinases-in particular, casein kinase 2 (CK2) and protein kinase A (PKA). CK2 promotes biogenesis of the TOM complex by phosphorylation of two key components, the receptor Tom22 and the import protein Mim1, which in turn are required for import of further Tom proteins. Inactivation of CK2 decreases the levels of the TOM complex and thus mitochondrial protein import. PKA phosphorylates Tom70 under nonrespiring conditions, thereby inhibiting its receptor activity and the import of mitochondrial metabolite carriers. We conclude that cytosolic kinases exert stimulatory and inhibitory effects on biogenesis and function of the TOM complex and thus regulate protein import into mitochondria.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citosol/enzimología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Fosforilación , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Am Chem Soc ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592946

RESUMEN

Selectively labeling cells with damaged membranes is needed not only for identifying dead cells in culture, but also for imaging membrane barrier dysfunction in pathologies in vivo. Most membrane permeability stains are permanently colored or fluorescent dyes that need washing to remove their non-uptaken extracellular background and reach good image contrast. Others are DNA-binding environment-dependent fluorophores, which lack design modularity, have potential toxicity, and can only detect permeabilization of cell volumes containing a nucleus (i.e., cannot delineate damaged volumes in vivo nor image non-nucleated cell types or compartments). Here, we develop modular fluorogenic probes that reveal the whole cytosolic volume of damaged cells, with near-zero background fluorescence so that no washing is needed. We identify a specific disulfonated fluorogenic probe type that only enters cells with damaged membranes, then is enzymatically activated and marks them. The esterase probe MDG1 is a reliable tool to reveal live cells that have been permeabilized by biological, biochemical, or physical membrane damage, and it can be used in multicolor microscopy. We confirm the modularity of this approach by also adapting it for improved hydrolytic stability, as the redox probe MDG2. We conclude by showing the unique performance of MDG probes in revealing axonal membrane damage (which DNA fluorogens cannot achieve) and in discriminating damage on a cell-by-cell basis in embryos in vivo. The MDG design thus provides powerful modular tools for wash-free in vivo imaging of membrane damage, and indicates how designs may be adapted for selective delivery of drug cargoes to these damaged cells: offering an outlook from selective diagnosis toward therapy of membrane-compromised cells in disease.

3.
Biol Chem ; 402(1): 73-88, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33544491

RESUMEN

Mitochondria are key players of cellular metabolism, Ca2+ homeostasis, and apoptosis. The functionality of mitochondria is tightly regulated, and dysfunctional mitochondria are removed via mitophagy, a specialized form of autophagy that is compromised in hereditary forms of Parkinson's disease. Through mitophagy, cells are able to cope with mitochondrial stress until the damage becomes too great, which leads to the activation of pro-apoptotic BCL-2 family proteins located on the outer mitochondrial membrane. Active pro-apoptotic BCL-2 proteins facilitate the release of cytochrome c from the mitochondrial intermembrane space (IMS) into the cytosol, committing the cell to apoptosis by activating a cascade of cysteinyl-aspartate specific proteases (caspases). We are only beginning to understand how the choice between mitophagy and the activation of caspases is determined on the mitochondrial surface. Intriguingly in neurons, caspase activation also plays a non-apoptotic role in synaptic plasticity. Here we review the current knowledge on the interplay between mitophagy and caspase activation with a special focus on the central nervous system.


Asunto(s)
Apoptosis , Humanos , Mitocondrias/metabolismo , Mitofagia , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
4.
Biochem Soc Trans ; 45(5): 1045-1052, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28778985

RESUMEN

Neurons are post-mitotic cells that must function throughout the life of an organism. The high energetic requirements and Ca2+ spikes of synaptic transmission place a burden on neuronal mitochondria. The removal of older mitochondria and the replenishment of the functional mitochondrial pool in axons with freshly synthesized components are therefore important parts of neuronal maintenance. Although the mechanism of mitochondrial protein import and dynamics is studied in great detail, the length of neurons poses additional challenges to those processes. In this mini-review, I briefly cover the basics of mitochondrial biogenesis and proceed to explain the interdependence of mitochondrial transport and mitochondrial health. I then extrapolate recent findings in yeast and mammalian cultured cells to neurons, making a case for axonal translation as a contributor to mitochondrial biogenesis in neurons.


Asunto(s)
Axones/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Neuronas/citología , Animales , Transporte Biológico , Humanos , Neuronas/metabolismo , Transmisión Sináptica , Levaduras/metabolismo
5.
Nat Metab ; 6(3): 514-530, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38504131

RESUMEN

Mitochondrial quality control failure is frequently observed in neurodegenerative diseases. The detection of damaged mitochondria by stabilization of PTEN-induced kinase 1 (PINK1) requires transport of Pink1 messenger RNA (mRNA) by tethering it to the mitochondrial surface. Here, we report that inhibition of AMP-activated protein kinase (AMPK) by activation of the insulin signalling cascade prevents Pink1 mRNA binding to mitochondria. Mechanistically, AMPK phosphorylates the RNA anchor complex subunit SYNJ2BP within its PDZ domain, a phosphorylation site that is necessary for its interaction with the RNA-binding protein SYNJ2. Notably, loss of mitochondrial Pink1 mRNA association upon insulin addition is required for PINK1 protein activation and its function as a ubiquitin kinase in the mitophagy pathway, thus placing PINK1 function under metabolic control. Induction of insulin resistance in vitro by the key genetic Alzheimer risk factor apolipoprotein E4 retains Pink1 mRNA at the mitochondria and prevents proper PINK1 activity, especially in neurites. Our results thus identify a metabolic switch controlling Pink1 mRNA localization and PINK1 activity via insulin and AMPK signalling in neurons and propose a mechanistic connection between insulin resistance and mitochondrial dysfunction.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Resistencia a la Insulina , Proteínas Quinasas , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Insulina/metabolismo , Neuronas/metabolismo , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Ratones , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
6.
J Vis Exp ; (186)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35993756

RESUMEN

Mitochondria are the primary suppliers of ATP (adenosine triphosphate) in neurons. Mitochondrial dysfunction is a common phenotype in many neurodegenerative diseases. Given some axons' elaborate architecture and extreme length, it is not surprising that mitochondria in axons can experience different environments compared to their cell body counterparts. Interestingly, dysfunction of axonal mitochondria often precedes effects on the cell body. To model axonal mitochondrial dysfunction in vitro, microfluidic devices allow treatment of axonal mitochondria without affecting the somal mitochondria. The fluidic pressure gradient in these chambers prevents diffusion of molecules against the gradient, thus allowing for analysis of mitochondrial properties in response to local pharmacological challenges within axons. The current protocol describes the seeding of dissociated hippocampal neurons in microfluidic devices, staining with a membrane-potential sensitive dye, treatment with a mitochondrial toxin, and the subsequent microscopic analysis. This versatile method to study axonal biology can be applied to many pharmacological perturbations and imaging readouts, and is suitable for several neuronal subtypes.


Asunto(s)
Axones , Microfluídica , Adenosina Trifosfato/metabolismo , Transporte Axonal/fisiología , Axones/fisiología , Mitocondrias/metabolismo , Neuronas/fisiología
7.
Methods Mol Biol ; 2431: 225-237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412279

RESUMEN

The use of fluorescent proteins has revolutionized the study of protein localization and transport. However, the visualization of other molecules and specifically RNA during live-cell imaging remains challenging. In this chapter, we provide guidance to the available methods, their advantages and drawbacks as well as provide a detailed protocol for the detection of RNA transport using the MS2/PP7-split-Venus system for background-free RNA imaging.


Asunto(s)
Neuronas , Transporte de ARN , Axones/metabolismo , Neuronas/metabolismo , ARN/metabolismo , ARN Mensajero/genética
8.
Autophagy ; 18(12): 3048-3049, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35470750

RESUMEN

Mitostasis, the process of mitochondrial maintenance by biogenesis and degradative mechanisms, is challenged by the extreme length of axons. PINK1 (PTEN induced putative kinase 1) is a mitochondrial protein that targets damaged mitochondria for mitophagy. In reconciling the short half-life of PINK1 with the need for mitophagy of damaged axonal mitochondria, we found that axonal mitophagy depends on local translation of the Pink1 mRNA. Using live-cell imaging, we detected co-transport of the Pink1 mRNA on mitochondria in neurons, which is crucial for mitophagy in distal parts of the cell. Here we discuss how the coupling of the transcript of a short-lived mitochondrial protein to the movement of its target organelles contributes to our understanding of mitostasis in neurons.


Asunto(s)
Mitofagia , Proteínas Quinasas , Mitofagia/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Autofagia/fisiología , Mitocondrias/metabolismo , Axones/metabolismo , Proteínas Mitocondriales/metabolismo
9.
Annu Rev Anal Chem (Palo Alto Calif) ; 15(1): 1-16, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35303775

RESUMEN

Cellular organelles are highly specialized compartments with distinct functions. With the increasing resolution of detection methods, it is becoming clearer that same organelles may have different functions or properties not only within different cell populations of a tissue but also within the same cell. Dysfunction or altered function affects the organelle itself and may also lead to malignancies or undesirable cell death. To understand cellular function or dysfunction, it is therefore necessary to analyze cellular components at the single-organelle level. Here, we review the recent advances in analyzing cellular function at single-organelle resolution using high-parameter flow cytometry or multicolor confocal microscopy. We focus on the analysis of mitochondria, as they are organelles at the crossroads of various cellular signaling pathways and functions. However, most of the applied methods/technologies are transferable to any other organelle, such as the endoplasmic reticulum, lysosomes, or peroxisomes.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Lisosomas/metabolismo , Lisosomas/patología , Microscopía Confocal , Mitocondrias/metabolismo , Mitocondrias/patología , Peroxisomas/metabolismo , Peroxisomas/patología
10.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35777956

RESUMEN

Ubiquilin-2 (UBQLN2) is a ubiquitin-binding protein that shuttles ubiquitinated proteins to proteasomal and autophagic degradation. UBQLN2 mutations are genetically linked to the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). However, it remains elusive how UBQLN2 mutations cause ALS/FTD. Here, we systematically examined proteomic and transcriptomic changes in patient-derived lymphoblasts and CRISPR/Cas9-engineered HeLa cells carrying ALS/FTD UBQLN2 mutations. This analysis revealed a strong up-regulation of the microtubule-associated protein 1B (MAP1B) which was also observed in UBQLN2 knockout cells and primary rodent neurons depleted of UBQLN2, suggesting that a UBQLN2 loss-of-function mechanism is responsible for the elevated MAP1B levels. Consistent with MAP1B's role in microtubule binding, we detected an increase in total and acetylated tubulin. Furthermore, we uncovered that UBQLN2 mutations result in decreased phosphorylation of MAP1B and of the ALS/FTD-linked fused in sarcoma (FUS) protein at S439 which is critical for regulating FUS-RNA binding and MAP1B protein abundance. Together, our findings point to a deregulated UBQLN2-FUS-MAP1B axis that may link protein homeostasis, RNA metabolism, and cytoskeleton dynamics, three molecular pathomechanisms of ALS/FTD.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Esclerosis Amiotrófica Lateral , Proteínas Relacionadas con la Autofagia , Demencia Frontotemporal , Proteínas Asociadas a Microtúbulos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteómica , ARN/genética , ARN/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Neuron ; 110(9): 1516-1531.e9, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35216662

RESUMEN

PTEN-induced kinase 1 (PINK1) is a short-lived protein required for the removal of damaged mitochondria through Parkin translocation and mitophagy. Because the short half-life of PINK1 limits its ability to be trafficked into neurites, local translation is required for this mitophagy pathway to be active far from the soma. The Pink1 transcript is associated and cotransported with neuronal mitochondria. In concert with translation, the mitochondrial outer membrane proteins synaptojanin 2 binding protein (SYNJ2BP) and synaptojanin 2 (SYNJ2) are required for tethering Pink1 mRNA to mitochondria via an RNA-binding domain in SYNJ2. This neuron-specific adaptation for the local translation of PINK1 provides distal mitochondria with a continuous supply of PINK1 for the activation of mitophagy.


Asunto(s)
Mitofagia , Proteínas Quinasas , Mitocondrias/metabolismo , Mitofagia/genética , Proteínas del Tejido Nervioso , Neuronas/metabolismo , Monoéster Fosfórico Hidrolasas , Proteínas Quinasas/genética , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
12.
Cells ; 10(12)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34943944

RESUMEN

Established disease models have helped unravel the mechanistic underpinnings of pathological phenotypes in Parkinson's disease (PD), the second most common neurodegenerative disorder. However, these discoveries have been limited to relatively simple cellular systems and animal models, which typically manifest with incomplete or imperfect recapitulation of disease phenotypes. The advent of induced pluripotent stem cells (iPSCs) has provided a powerful scientific tool for investigating the underlying molecular mechanisms of both familial and sporadic PD within disease-relevant cell types and patient-specific genetic backgrounds. Overwhelming evidence supports mitochondrial dysfunction as a central feature in PD pathophysiology, and iPSC-based neuronal models have expanded our understanding of mitochondrial dynamics in the development and progression of this devastating disorder. The present review provides a comprehensive assessment of mitochondrial phenotypes reported in iPSC-derived neurons generated from PD patients' somatic cells, with an emphasis on the role of mitochondrial respiration, morphology, and trafficking, as well as mitophagy and calcium handling in health and disease. Furthermore, we summarize the distinguishing characteristics of vulnerable midbrain dopaminergic neurons in PD and report the unique advantages and challenges of iPSC disease modeling at present, and for future mechanistic and therapeutic applications.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias/genética , Enfermedad de Parkinson/genética , Neuronas Dopaminérgicas/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Mitocondrias/metabolismo , Mitofagia/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fenotipo
13.
Autophagy ; 14(2): 311-335, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29165030

RESUMEN

In yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and proper mitochondrial protein import. In mammals, the biological function of protein kinase CSNK2/CK2 remains vastly elusive and it is unknown whether CSNK2-dependent phosphorylation of TOMM protein subunits has a similar role as that in yeast. To address this issue, we used a skeletal muscle-specific Csnk2b/Ck2ß-conditional knockout (cKO) mouse model. Phenotypically, these skeletal muscle Csnk2b cKO mice showed reduced muscle strength and abnormal metabolic activity of mainly oxidative muscle fibers, which point towards mitochondrial dysfunction. Enzymatically, active muscle lysates from skeletal muscle Csnk2b cKO mice phosphorylate murine TOMM22, the mammalian ortholog of yeast Tom22, to a lower extent than lysates prepared from controls. Mechanistically, CSNK2-mediated phosphorylation of TOMM22 changes its binding affinity for mitochondrial precursor proteins. However, in contrast to yeast, mitochondrial protein import seems not to be affected in vitro using mitochondria isolated from muscles of skeletal muscle Csnk2b cKO mice. PINK1, a mitochondrial health sensor that undergoes constitutive import under physiological conditions, accumulates within skeletal muscle Csnk2b cKO fibers and labels abnormal mitochondria for removal by mitophagy as demonstrated by the appearance of mitochondria-containing autophagosomes through electron microscopy. Mitophagy can be normalized by either introduction of a phosphomimetic TOMM22 mutant in cultured myotubes, or by in vivo electroporation of phosphomimetic Tomm22 into muscles of mice. Importantly, transfection of the phosphomimetic Tomm22 mutant in muscle cells with ablated Csnk2b restored their oxygen consumption rate comparable to wild-type levels. In sum, our data show that mammalian CSNK2-dependent phosphorylation of TOMM22 is a critical switch for mitophagy and reveal CSNK2-dependent physiological implications on metabolism, muscle integrity and behavior.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Mitocondrias Musculares/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/enzimología , Mitofagia/fisiología , Músculo Esquelético/enzimología , Animales , Autofagia , Quinasa de la Caseína II/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mitofagia/genética , Modelos Animales , Fosforilación , Transporte de Proteínas , Transducción de Señal
14.
Cell Metab ; 19(3): 357-72, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24561263

RESUMEN

Mitochondria fulfill central functions in bioenergetics, metabolism, and apoptosis. They import more than 1,000 different proteins from the cytosol. It had been assumed that the protein import machinery is constitutively active and not subject to detailed regulation. However, recent studies indicate that mitochondrial protein import is regulated at multiple levels connected to cellular metabolism, signaling, stress, and pathogenesis of diseases. Here, we discuss the molecular mechanisms of import regulation and their implications for mitochondrial homeostasis. The protein import activity can function as a sensor of mitochondrial fitness and provides a direct means of regulating biogenesis, composition, and turnover of the organelle.


Asunto(s)
Mitocondrias/metabolismo , Metabolismo Energético , Humanos , Proteínas Mitocondriales/metabolismo , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Transducción de Señal
15.
Science ; 346(6213): 1109-13, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25378463

RESUMEN

Mitochondria play central roles in cellular energy conversion, metabolism, and apoptosis. Mitochondria import more than 1000 different proteins from the cytosol. It is unknown if the mitochondrial protein import machinery is connected to the cell division cycle. We found that the cyclin-dependent kinase Cdk1 stimulated assembly of the main mitochondrial entry gate, the translocase of the outer membrane (TOM), in mitosis. The molecular mechanism involved phosphorylation of the cytosolic precursor of Tom6 by cyclin Clb3-activated Cdk1, leading to enhanced import of Tom6 into mitochondria. Tom6 phosphorylation promoted assembly of the protein import channel Tom40 and import of fusion proteins, thus stimulating the respiratory activity of mitochondria in mitosis. Tom6 phosphorylation provides a direct means for regulating mitochondrial biogenesis and activity in a cell cycle-specific manner.


Asunto(s)
Ciclo Celular , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Precursores de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Citosol/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Fosforilación , Transporte de Proteínas
16.
Cell Metab ; 18(4): 578-87, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24093680

RESUMEN

Most mitochondrial proteins are imported by the translocase of the outer mitochondrial membrane (TOM). Tom22 functions as central receptor and transfers preproteins to the import pore. Casein kinase 2 (CK2) constitutively phosphorylates the cytosolic precursor of Tom22 at Ser44 and Ser46 and, thus, promotes its import. It is unknown whether Tom22 is regulated under different metabolic conditions. We report that CK1, which is involved in glucose-induced signal transduction, is bound to mitochondria. CK1 phosphorylates Tom22 at Thr57 and stimulates the assembly of Tom22 and Tom20. In contrast, protein kinase A (PKA), which is also activated by the addition of glucose, phosphorylates the precursor of Tom22 at Thr76 and impairs its import. Thus, PKA functions in an opposite manner to CK1 and CK2. Our results reveal that three kinases regulate the import and assembly of Tom22, demonstrating that the central receptor is a major target for the posttranslational regulation of mitochondrial protein import.


Asunto(s)
Glucosa/farmacología , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Quinasa de la Caseína I/metabolismo , Quinasa de la Caseína II/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitocondrias/enzimología , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Mol Biol Cell ; 23(9): 1618-27, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22419819

RESUMEN

The preprotein translocase of the outer mitochondrial membrane (TOM) functions as the main entry gate for the import of nuclear-encoded proteins into mitochondria. The major subunits of the TOM complex are the three receptors Tom20, Tom22, and Tom70 and the central channel-forming protein Tom40. Cytosolic kinases have been shown to regulate the biogenesis and activity of the Tom receptors. Casein kinase 2 stimulates the biogenesis of Tom22 and Tom20, whereas protein kinase A (PKA) impairs the receptor function of Tom70. Here we report that PKA exerts an inhibitory effect on the biogenesis of the ß-barrel protein Tom40. Tom40 is synthesized as precursor on cytosolic ribosomes and subsequently imported into mitochondria. We show that PKA phosphorylates the precursor of Tom40. The phosphorylated Tom40 precursor is impaired in import into mitochondria, whereas the nonphosphorylated precursor is efficiently imported. We conclude that PKA plays a dual role in the regulation of the TOM complex. Phosphorylation by PKA not only impairs the receptor activity of Tom70, but it also inhibits the biogenesis of the channel protein Tom40.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/aislamiento & purificación , Membranas Mitocondriales/enzimología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Fosforilación , Saccharomyces cerevisiae/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA