RESUMEN
BACKGROUND: Patient-level predictors of enrollment in pediatric biorepositories are poorly described. Especially in pandemic settings, understanding who is likely to enroll in a biorepository is critical to interpreting analyses conducted on biospecimens. We describe predictors of pediatric COVID-19 biorepository enrollment and biospecimen donation to identify gaps in COVID-19 research on pediatric biospecimens. METHODS: We compared data from enrollees and non-enrollees aged 0-25 years with suspected or confirmed COVID-19 infection who were approached for enrollment in the Massachusetts General Hospital pediatric COVID-19 biorepository between April 12, 2020, and May 28, 2020, from community or academic outpatient or inpatient settings. Demographic and clinical data at presentation to care were from automatic and manual chart extractions. Predictors of enrollment and biospecimen donation were assessed with Poisson regression models. RESULTS: Among 457 individuals approached, 214 (47%) enrolled in the biorepository. A COVID-19 epidemiologic risk factor was recorded for 53%, and 15% lived in a US Centers for Disease Control and Prevention-defined COVID-19 hotspot. Individuals living in a COVID-19 hotspot (relative risk (RR) 2.4 [95% confidence interval (CI): 1.8-3.2]), with symptoms at presentation (RR 1.8 [95% CI: 1.2-2.7]), or admitted to hospital (RR 1.8 [95% CI: 1.2-2.8]) were more likely to enroll. Seventy-nine percent of enrollees donated any biospecimen, including 97 nasopharyngeal swabs, 119 oropharyngeal swabs, and 105 blood, 16 urine, and 16 stool specimens, respectively. Age, sex, race, ethnicity, and neighborhood-level socioeconomic status based on zip code did not predict enrollment or biospecimen donation. CONCLUSIONS: While fewer than half of individuals approached consented to participate in the pediatric biorepository, enrollment appeared to be representative of children affected by the pandemic. Living in a COVID-19 hotspot, symptoms at presentation to care and hospital admission predicted biorepository enrollment. Once enrolled, most individuals donated a biospecimen.
Asunto(s)
COVID-19 , Adolescente , Adulto , COVID-19/epidemiología , Niño , Preescolar , Etnicidad , Humanos , Lactante , Recién Nacido , Massachusetts , Pandemias , Adulto JovenRESUMEN
OBJECTIVES: As schools plan for re-opening, understanding the potential role children play in the coronavirus infectious disease 2019 (COVID-19) pandemic and the factors that drive severe illness in children is critical. STUDY DESIGN: Children ages 0-22 years with suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection presenting to urgent care clinics or being hospitalized for confirmed/suspected SARS-CoV-2 infection or multisystem inflammatory syndrome in children (MIS-C) at Massachusetts General Hospital were offered enrollment in the Massachusetts General Hospital Pediatric COVID-19 Biorepository. Enrolled children provided nasopharyngeal, oropharyngeal, and/or blood specimens. SARS-CoV-2 viral load, ACE2 RNA levels, and serology for SARS-CoV-2 were quantified. RESULTS: A total of 192 children (mean age, 10.2 ± 7.0 years) were enrolled. Forty-nine children (26%) were diagnosed with acute SARS-CoV-2 infection; an additional 18 children (9%) met the criteria for MIS-C. Only 25 children (51%) with acute SARS-CoV-2 infection presented with fever; symptoms of SARS-CoV-2 infection, if present, were nonspecific. Nasopharyngeal viral load was highest in children in the first 2 days of symptoms, significantly higher than hospitalized adults with severe disease (P = .002). Age did not impact viral load, but younger children had lower angiotensin-converting enzyme 2 expression (P = .004). Immunoglobulin M (IgM) and Immunoglobulin G (IgG) to the receptor binding domain of the SARS-CoV-2 spike protein were increased in severe MIS-C (P < .001), with dysregulated humoral responses observed. CONCLUSIONS: This study reveals that children may be a potential source of contagion in the SARS-CoV-2 pandemic despite having milder disease or a lack of symptoms; immune dysregulation is implicated in severe postinfectious MIS-C.
Asunto(s)
COVID-19 , Adolescente , Factores de Edad , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/transmisión , Prueba de COVID-19 , Niño , Preescolar , Comorbilidad , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Massachusetts/epidemiología , Pandemias , Índice de Severidad de la Enfermedad , Carga Viral , Adulto JovenRESUMEN
BACKGROUND: COVID-19, the disease caused by the highly infectious and transmissible coronavirus SARS-CoV-2, has quickly become a morbid global pandemic. Although the impact of SARS-CoV-2 infection in children is less clinically apparent, collecting high-quality biospecimens from infants, children, and adolescents in a standardized manner during the COVID-19 pandemic is essential to establish a biologic understanding of the disease in the pediatric population. This biorepository enables pediatric centers world-wide to collect samples uniformly to drive forward our understanding of COVID-19 by addressing specific pediatric and neonatal COVID-19-related questions. METHODS: A COVID-19 biospecimen collection study was implemented with strategic enrollment guidelines to include patients seen in urgent care clinics and hospital settings, neonates born to SARS-CoV-2 infected mothers, and asymptomatic children. The methodology described here, details the importance of establishing collaborations between the clinical and research teams to harmonize protocols for patient recruitment and sample collection, processing and storage. It also details modifications required for biobanking during a surge of the COVID-19 pandemic. RESULTS: Considerations and challenges facing enrollment of neonatal and pediatric cohorts are described. A roadmap is laid out for successful collection, processing, storage and database management of multiple pediatric samples such as blood, nasopharyngeal and oropharyngeal swabs, sputum, saliva, tracheal aspirates, stool, and urine. Using this methodology, we enrolled 327 participants, who provided a total of 972 biospecimens. CONCLUSIONS: Pediatric biospecimens will be key in answering questions relating to viral transmission by children, differences between pediatric and adult viral susceptibility and immune responses, the impact of maternal SARS-CoV-2 infection on fetal development, and factors driving the Multisystem Inflammatory Syndrome in Children. The specimens in this biorepository will allow necessary comparative studies between children and adults, help determine the accuracy of current pediatric viral testing techniques, in addition to, understanding neonatal exposure to SARS-CoV-2 infection and disease abnormalities. The successful establishment of a pediatric biorepository is critical to provide insight into disease pathogenesis, and subsequently, develop future treatment and vaccination strategies.
Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Manejo de Especímenes/métodos , Adolescente , COVID-19 , Niño , Preescolar , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/transmisión , Femenino , Desarrollo Fetal , Hospitalización , Humanos , Lactante , Recién Nacido , Masculino , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/transmisión , SARS-CoV-2RESUMEN
To prevent or mitigate chronic illness burden, people with cystic fibrosis (pwCF) and their family caregivers need primary (generalist-level) palliative care from the time of diagnosis forward. We used qualitative methods to explore their preferences about a screening-and-triage model ("Improving Life with CF") developed to standardize this care. We purposively sampled and interviewed 14 pwCF and caregivers from 5 Improving Life with CF study sites. Thematic analysis was guided by a priori codes using the National Consensus Project's Guidelines for Quality Palliative Care. Participants included 7 adults and 2 adolescents with CF (3 with advanced disease), 4 parents, 1 partner (7 women; 5 people of color). Few were familiar with palliative care. Illness burden was described in multiple domains, including physical (e.g., dyspnea, pain), psychological (e.g., anxiety), and social (e.g., family well-being; impact on work/school). Most preferred survey-based screening with care coordination by the CF team. Preferences for screening approaches varied. PwCF and caregivers experience illness burden and are receptive to a CF-team delivered primary palliative care screening-and-triage model with flexible processes.
RESUMEN
BACKGROUND: A cystic fibrosis (CF)-specific cognitive-behavioral therapy intervention (CF-CBT) was developed in partnership with the CF community to advance preventive mental health care. Multidisciplinary providers across three centers were trained to deliver CF-CBT for this pilot assessing feasibility/acceptability and preliminary effectiveness of an integrated model of care. METHODS: The 8-session CF-CBT was delivered to 14 adults with mild depression and/or anxiety symptoms in-person and via audio telehealth. Assessment of attrition, engagement, homework completion, treatment satisfaction, and treatment fidelity informed feasibility/acceptability assessment. Mental health outcomes included depression, anxiety, quality of life (Cystic Fibrosis Questionnaire-Revised [CFQ-R), perceived stress and coping. Preliminary effectiveness was evaluated with Cohen's d metric of effect sizes (ES) of pre-post mean change scores. RESULTS: A total of 108 sessions were conducted; 13 adults completed the intervention; 1 discontinued early. Engagement, homework completion, and treatment acceptability were highly rated (mean = 30; SD = 2, range: 27-32 on a 32-point scale). Fidelity scores ranged from 85.7% to 93.6%. Large ES changes reflected improvements in depressive symptoms (-0.83), CFQ-R (Vitality scale: 1.11), and Relaxation Skills (0.93); moderate ES for CFQ-R Role Functioning (0.63), Awareness of Tension (0.62), Coping Confidence (0.70) and CF-specific Coping (0.55); and small ES for anxiety symptoms (-0.22), perceived stress (-0.25), Behavioral Activation (0.29), and several CFQ-R domains, including Emotional Functioning (0.29). Two CFQ-R subscales decreased (Body Image, Eating Concerns). CONCLUSIONS: Results indicated feasibility and acceptability of CF-CBT and its integration into team-based CF care with promising effectiveness, especially for depression. A multicenter randomized controlled trial of CF-CBT will further examine effectiveness of a CF-specific integrated care model.
Asunto(s)
Terapia Cognitivo-Conductual , Fibrosis Quística , Adulto , Cognición , Terapia Cognitivo-Conductual/métodos , Fibrosis Quística/complicaciones , Fibrosis Quística/psicología , Fibrosis Quística/terapia , Estudios de Factibilidad , Humanos , Calidad de VidaRESUMEN
Background: COVID-19, the disease caused by the highly infectious and transmissible coronavirus SARS-CoV-2, has quickly become a morbid global pandemic. Although the impact of SARS-CoV-2 infection in children is less clinically apparent, collecting high-quality biospecimens from infants, children, and adolescents in a standardized manner during the COVID-19 pandemic is essential to establish a biologic understanding of the disease in the pediatric population. This biorepository enables pediatric centers world-wide to collect samples uniformly to drive forward our understanding of COVID-19 by addressing specific pediatric and neonatal COVID-19-related questions. Methods: A COVID-19 biospecimen collection study was implemented with strategic enrollment guidelines to include patients seen in urgent care clinics and hospital settings, neonates born to SARS-CoV-2 infected mothers, and asymptomatic children. The methodology described here, details the importance of establishing collaborations between the clinical and research teams to harmonize protocols for patient recruitment and sample collection, processing and storage. It also details modifications required for biobanking during a surge of the COVID-19 pandemic. Results: Considerations and challenges facing enrollment of neonatal and pediatric cohorts are described. A roadmap is laid out for successful collection, processing, storage and database management of multiple pediatric samples such as blood, nasopharyngeal and oropharyngeal swabs, sputum, saliva, tracheal aspirates, stool, and urine. Using this methodology, we enrolled 327 participants, who provided a total of 972 biospecimens. Conclusions: Pediatric biospecimens will be key in answering questions relating to viral transmission by children, differences between pediatric and adult viral susceptibility and immune responses, the impact of maternal SARS-CoV-2 infection on fetal development, and factors driving the Multisystem Inflammatory Syndrome in Children. The specimens in this biorepository will allow necessary comparative studies between children and adults, help determine the accuracy of current pediatric viral testing techniques, in addition to, understanding neonatal exposure to SARS-CoV-2 infection and disease abnormalities. The successful establishment of a pediatric biorepository is critical to provide insight into disease pathogenesis, and subsequently, develop future treatment and vaccination strategies.