Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 142(3): 387-97, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20655099

RESUMEN

Alzheimer's disease (AD) is characterized by amyloid-beta (Abeta) and tau deposition in brain. It has emerged that Abeta toxicity is tau dependent, although mechanistically this link remains unclear. Here, we show that tau, known as axonal protein, has a dendritic function in postsynaptic targeting of the Src kinase Fyn, a substrate of which is the NMDA receptor (NR). Missorting of tau in transgenic mice expressing truncated tau (Deltatau) and absence of tau in tau(-/-) mice both disrupt postsynaptic targeting of Fyn. This uncouples NR-mediated excitotoxicity and hence mitigates Abeta toxicity. Deltatau expression and tau deficiency prevent memory deficits and improve survival in Abeta-forming APP23 mice, a model of AD. These deficits are also fully rescued with a peptide that uncouples the Fyn-mediated interaction of NR and PSD-95 in vivo. Our findings suggest that this dendritic role of tau confers Abeta toxicity at the postsynapse with direct implications for pathogenesis and treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Dendritas/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Animales , Encéfalo/patología , Homólogo 4 de la Proteína Discs Large , Guanilato-Quinasas , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Proteínas tau/genética
2.
Am J Pathol ; 193(10): 1548-1567, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37419385

RESUMEN

ACTA1 encodes skeletal muscle-specific α-actin, which polymerizes to form the thin filament of the sarcomere. Mutations in ACTA1 are responsible for approximately 30% of nemaline myopathy (NM) cases. Previous studies of weakness in NM have focused on muscle structure and contractility, but genetic issues alone do not explain the phenotypic heterogeneity observed in patients with NM or NM mouse models. To identify additional biological processes related to NM phenotypic severity, proteomic analysis was performed using muscle protein isolates from wild-type mice in comparison to moderately affected knock-in (KI) Acta1H40Y and the minimally affected transgenic (Tg) ACTA1D286G NM mice. This analysis revealed abnormalities in mitochondrial function and stress-related pathways in both mouse models, supporting an in-depth assessment of mitochondrial biology. Interestingly, evaluating each model in comparison to its wild-type counterpart identified different degrees of mitochondrial abnormality that correlated well with the phenotypic severity of the mouse model. Muscle histology, mitochondrial respiration, electron transport chain function, and mitochondrial transmembrane potential were all normal or minimally affected in the TgACTA1D286G mouse model. In contrast, the more severely affected KI.Acta1H40Y mice displayed significant abnormalities in relation to muscle histology, mitochondrial respirometry, ATP, ADP, and phosphate content, and mitochondrial transmembrane potential. These findings suggest that abnormal energy metabolism is related to symptomatic severity in NM and may constitute a contributor to phenotypic variability and a novel treatment target.


Asunto(s)
Miopatías Nemalínicas , Animales , Ratones , Actinas/genética , Modelos Animales de Enfermedad , Músculo Esquelético/metabolismo , Mutación , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/patología , Proteómica
3.
Nat Mater ; 21(1): 120-128, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518666

RESUMEN

The actin cytoskeleton is the primary driver of cellular adhesion and mechanosensing due to its ability to generate force and sense the stiffness of the environment. At the cell's leading edge, severing of the protruding Arp2/3 actin network generates a specific actin/tropomyosin (Tpm) filament population that controls lamellipodial persistence. The interaction between these filaments and adhesion to the environment is unknown. Using cellular cryo-electron tomography we resolve the ultrastructure of the Tpm/actin copolymers and show that they specifically anchor to nascent adhesions and are essential for focal adhesion assembly. Re-expression of Tpm1.8/1.9 in transformed and cancer cells is sufficient to restore cell-substrate adhesions. We demonstrate that knock-out of Tpm1.8/1.9 disrupts the formation of dorsal actin bundles, hindering the recruitment of α-actinin and non-muscle myosin IIa, critical mechanosensors. This loss causes a force-generation and proliferation defect that is notably reversed when cells are grown on soft surfaces. We conclude that Tpm1.8/1.9 suppress the metastatic phenotype, which may explain why transformed cells naturally downregulate this Tpm subset during malignant transformation.


Asunto(s)
Neoplasias , Tropomiosina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proliferación Celular , Seudópodos/metabolismo , Tropomiosina/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36982703

RESUMEN

The negative impact of irradiation or diet on the metabolic and immune profiles of cancer survivors have been previously demonstrated. The gut microbiota plays a critical role in regulating these functions and is highly sensitive to cancer therapies. The aim of this study was to investigate the effect of irradiation and diet on the gut microbiota and metabolic or immune functions. We exposed C57Bl/6J mice to a single dose of 6 Gy radiation and after 5 weeks, fed them a chow or high-fat diet (HFD) for 12 weeks. We characterised their faecal microbiota, metabolic (whole body and adipose tissue) functions, and systemic (multiplex cytokine, chemokine assay, and immune cell profiling) and adipose tissue inflammatory profiles (immune cell profiling). At the end of the study, we observed a compounding effect of irradiation and diet on the metabolic and immune profiles of adipose tissue, with exposed mice fed a HFD displaying a greater inflammatory signature and impaired metabolism. Mice fed a HFD also showed altered microbiota, irrespective of irradiation status. An altered diet may exacerbate the detrimental effects of irradiation on both the metabolic and inflammatory profiles. This could have implications for the diagnosis and prevention of metabolic complications in cancer survivors exposed to radiation.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Disbiosis/metabolismo , Citocinas/farmacología , Inmunidad , Ratones Endogámicos C57BL
5.
Semin Cell Dev Biol ; 102: 122-131, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31630997

RESUMEN

The physiological function of actin filaments is challenging to dissect because of the pleiotropic impact of global disruption of the actin cytoskeleton. Tropomyosin isoforms have provided a unique opportunity to address this issue. A substantial fraction of actin filaments in animal cells consist of co-polymers of actin with specific tropomyosin isoforms which determine the functional capacity of the filament. Genetic manipulation of the tropomyosins has revealed isoform specific roles and identified the physiological function of the different actin filament types based on their tropomyosin isoform composition. Surprisingly, there is remarkably little redundancy between the tropomyosins resulting in highly penetrant impacts of both ectopic overexpression and knockout of isoforms. The physiological roles of the tropomyosins cover a broad range from development and morphogenesis to cell migration and specialised tissue function and human diseases.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Tropomiosina/metabolismo , Animales , Humanos , Isoformas de Proteínas/metabolismo
6.
Br J Cancer ; 125(2): 265-276, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33981016

RESUMEN

BACKGROUND: Anti-microtubule agents are widely used to treat ovarian cancers, but the efficacy is often compromised by drug resistance. We investigated co-targeting the actin/tropomyosin cytoskeleton and microtubules to increase treatment efficacy in ovarian cancers and potentially overcome resistance. METHODS: The presence of tropomyosin-3.1 (Tpm3.1) was examined in clinical specimens from ovarian cancer patients using immunohistochemistry. Combinatorial effects of an anti-Tpm3.1 compound, ATM-3507, with vinorelbine and paclitaxel were evaluated in ovarian cancer cells via MTS and apoptosis assays. The mechanisms of action were established using live- and fixed-cell imaging and protein analysis. RESULTS: Tpm3.1 is overexpressed in 97% of tumour tissues (558 of 577) representing all histotypes of epithelial ovarian cancer. ATM-3507 displayed synergy with both anti-microtubule agents to reduce cell viability. Only vinorelbine synergised with ATM-3507 in causing apoptosis. ATM-3507 significantly prolonged vinorelbine-induced mitotic arrest with elevated activity of the spindle assembly checkpoint and mitotic cell death; however, ATM-3507 showed minor impact on paclitaxel-induced mitotic defects. Both combinations substantially increased post-mitotic G1 arrest with cyclin D1 and E1 downregulation and an increase of p21Cip and p27Kip. CONCLUSION: Combined targeting of Tpm3.1/actin and microtubules is a promising treatment strategy for ovarian cancer that should be further tested in clinical settings.


Asunto(s)
Carcinoma Epitelial de Ovario/metabolismo , Cloruros/farmacología , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Tropomiosina/metabolismo , Regulación hacia Arriba , Vinorelbina/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/tratamiento farmacológico , Tropomiosina/antagonistas & inhibidores , Regulación hacia Arriba/efectos de los fármacos
7.
J Cell Sci ; 132(15)2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31331962

RESUMEN

Co-polymers of tropomyosin and actin make up a major fraction of the actin cytoskeleton. Tropomyosin isoforms determine the function of an actin filament by selectively enhancing or inhibiting the association of other actin binding proteins, altering the stability of an actin filament and regulating myosin activity in an isoform-specific manner. Previous work has implicated specific roles for at least five different tropomyosin isoforms in stress fibres, as depletion of any of these five isoforms results in a loss of stress fibres. Despite this, most models of stress fibres continue to exclude tropomyosins. In this study, we investigate tropomyosin organisation in stress fibres by using super-resolution light microscopy and electron microscopy with genetically tagged, endogenous tropomyosin. We show that tropomyosin isoforms are organised in subdomains within the overall domain of stress fibres. The isoforms Tpm3.1 and 3.2 (hereafter Tpm3.1/3.2, encoded by TPM3) colocalise with non-muscle myosin IIa and IIb heads, and are in register, but do not overlap, with non-muscle myosin IIa and IIb tails. Furthermore, perturbation of Tpm3.1/3.2 results in decreased myosin IIa in stress fibres, which is consistent with a role for Tpm3.1 in maintaining myosin IIa localisation in stress fibres.


Asunto(s)
Miosina Tipo IIA no Muscular/metabolismo , Fibras de Estrés/metabolismo , Tropomiosina/metabolismo , Línea Celular Tumoral , Humanos , Miosina Tipo IIA no Muscular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fibras de Estrés/genética , Tropomiosina/genética
8.
J Cell Sci ; 131(6)2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29487177

RESUMEN

Many actin filaments in animal cells are co-polymers of actin and tropomyosin. In many cases, non-muscle myosin II associates with these co-polymers to establish a contractile network. However, the temporal relationship of these three proteins in the de novo assembly of actin filaments is not known. Intravital subcellular microscopy of secretory granule exocytosis allows the visualisation and quantification of the formation of an actin scaffold in real time, with the added advantage that it occurs in a living mammal under physiological conditions. We used this model system to investigate the de novo assembly of actin, tropomyosin Tpm3.1 (a short isoform of TPM3) and myosin IIA (the form of non-muscle myosin II with its heavy chain encoded by Myh9) on secretory granules in mouse salivary glands. Blocking actin polymerization with cytochalasin D revealed that Tpm3.1 assembly is dependent on actin assembly. We used time-lapse imaging to determine the timing of the appearance of the actin filament reporter LifeAct-RFP and of Tpm3.1-mNeonGreen on secretory granules in LifeAct-RFP transgenic, Tpm3.1-mNeonGreen and myosin IIA-GFP (GFP-tagged MYH9) knock-in mice. Our findings are consistent with the addition of tropomyosin to actin filaments shortly after the initiation of actin filament nucleation, followed by myosin IIA recruitment.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Tropomiosina/metabolismo , Citoesqueleto de Actina/genética , Actinas/genética , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Cadenas Pesadas de Miosina , Miosina Tipo IIA no Muscular/genética , Unión Proteica , Vesículas Secretoras/genética , Vesículas Secretoras/metabolismo , Tropomiosina/genética
9.
Acta Neuropathol ; 138(3): 477-495, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31218456

RESUMEN

Nemaline myopathy (NM) is a skeletal muscle disorder caused by mutations in genes that are generally involved in muscle contraction, in particular those related to the structure and/or regulation of the thin filament. Many pathogenic aspects of this disease remain largely unclear. Here, we report novel pathological defects in skeletal muscle fibres of mouse models and patients with NM: irregular spacing and morphology of nuclei; disrupted nuclear envelope; altered chromatin arrangement; and disorganisation of the cortical cytoskeleton. Impairments in contractility are the primary cause of these nuclear defects. We also establish the role of microtubule organisation in determining nuclear morphology, a phenomenon which is likely to contribute to nuclear alterations in this disease. Our results overlap with findings in diseases caused directly by mutations in nuclear envelope or cytoskeletal proteins. Given the important role of nuclear shape and envelope in regulating gene expression, and the cytoskeleton in maintaining muscle fibre integrity, our findings are likely to explain some of the hallmarks of NM, including contractile filament disarray, altered mechanical properties and broad transcriptional alterations.


Asunto(s)
Citoesqueleto/patología , Contracción Muscular/fisiología , Músculo Esquelético/patología , Miopatías Nemalínicas/patología , Adulto , Anciano , Animales , Núcleo Celular/patología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Miopatías Nemalínicas/fisiopatología , Adulto Joven
10.
Traffic ; 16(7): 691-711, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25783006

RESUMEN

Actin has an ill-defined role in the trafficking of GLUT4 glucose transporter vesicles to the plasma membrane (PM). We have identified novel actin filaments defined by the tropomyosin Tpm3.1 at glucose uptake sites in white adipose tissue (WAT) and skeletal muscle. In Tpm 3.1-overexpressing mice, insulin-stimulated glucose uptake was increased; while Tpm3.1-null mice they were more sensitive to the impact of high-fat diet on glucose uptake. Inhibition of Tpm3.1 function in 3T3-L1 adipocytes abrogates insulin-stimulated GLUT4 translocation and glucose uptake. In WAT, the amount of filamentous actin is determined by Tpm3.1 levels and is paralleled by changes in exocyst component (sec8) and Myo1c levels. In adipocytes, Tpm3.1 localizes with MyoIIA, but not Myo1c, and it inhibits Myo1c binding to actin. We propose that Tpm3.1 determines the amount of cortical actin that can engage MyoIIA and generate contractile force, and in parallel limits the interaction of Myo1c with actin filaments. The balance between these actin filament populations may determine the efficiency of movement and/or fusion of GLUT4 vesicles with the PM.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Glucosa/metabolismo , Tropomiosina/metabolismo , Células 3T3 , Adipocitos/metabolismo , Animales , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Miosina Tipo I/metabolismo , Unión Proteica , Transporte de Proteínas , Tropomiosina/genética
11.
J Cell Sci ; 128(16): 2965-74, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26240174

RESUMEN

Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.


Asunto(s)
Citoesqueleto de Actina/genética , Proliferación Celular/genética , Isoformas de Proteínas/genética , Tropomiosina/genética , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Citoesqueleto/genética , Citoesqueleto/metabolismo , Glucosa/genética , Glucosa/metabolismo , Humanos , Ratones , Morfogénesis/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas/genética , Tropomiosina/metabolismo
12.
Am J Pathol ; 186(6): 1568-81, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27102768

RESUMEN

Nemaline myopathies (NMs) are a group of congenital muscle diseases caused by mutations in at least 10 genes and associated with a range of clinical symptoms. NM is defined on muscle biopsy by the presence of cytoplasmic rod-like structures (nemaline rods) composed of cytoskeletal material. Myofiber smallness is also found in many cases of NM and may represent a cause of weakness that can be counteracted by treatment. We have used i.p. injection of activin type IIB receptor (ActRIIB)-mFc (an inhibitor of myostatin signaling) to promote hypertrophy and increase strength in our prior murine work; we therefore tested whether ActRIIB-mFc could improve weakness in NM mice through myofiber hypertrophy. We report a study of ActRIIB-mFc treatment in the Acta1 H40Y mouse model of NM. Treatment of Acta1 H40Y mice produced significant increases in body mass, muscle mass, quadriceps myofiber size, and survival, but other measurements of strength (forelimb grip strength, ex vivo measurements of contractile function) did not improve. Our studies also identified that the complications of urethral obstruction are associated with mortality in male hemizygote Acta1 H40Y mice. The incidence of urethral obstruction and histologic evidence of chronic obstruction (inflammation) were significantly lower in Acta1 H40Y mice that had been treated with ActRIIB-mFc. ActRIIB-mFc treatment produces a mild benefit to the disease phenotype in Acta1 H40Y mice.


Asunto(s)
Receptores de Activinas Tipo II/antagonistas & inhibidores , Miofibrillas/efectos de los fármacos , Miopatías Nemalínicas/patología , Animales , Western Blotting , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Mutantes , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Miofibrillas/patología
13.
Ann Neurol ; 79(5): 717-725, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26891371

RESUMEN

OBJECTIVE: Nemaline myopathy, one of the most common congenital myopathies, is associated with mutations in various genes including ACTA1. This disease is also characterized by various forms/degrees of muscle weakness, with most cases being severe and resulting in death in infancy. Recent findings have provided valuable insight into the underlying pathophysiological mechanisms. Mutations in ACTA1 directly disrupt binding interactions between actin and myosin, and consequently the intrinsic force-generating capacity of muscle fibers. ACTA1 mutations are also associated with variations in myofiber size, the mechanisms of which have been unclear. In the present study, we sought to test the hypotheses that the compromised functional and morphological attributes of skeletal muscles bearing ACTA1 mutations (1) would be directly due to the inefficient actomyosin complex and (2) could be restored by manipulating myosin expression. METHODS: We used a knockin mouse model expressing the ACTA1 His40Tyr actin mutation found in human patients. We then performed in vivo intramuscular injections of recombinant adeno-associated viral vectors harboring a myosin transgene known to facilitate muscle contraction. RESULTS: We observed that in the presence of the transgene, the intrinsic force-generating capacity was restored and myofiber size was normal. INTERPRETATION: This demonstrates a direct link between disrupted attachment of myosin molecules to actin monomers and muscle fiber atrophy. These data also suggest that further therapeutic interventions should primarily target myosin dysfunction to alleviate the pathology of ACTA1-related nemaline myopathy. Ann Neurol 2016;79:717-725.

14.
BMC Genomics ; 17: 450, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27295951

RESUMEN

BACKGROUND: Williams-Beuren Syndrome (WBS) is a genetic disorder associated with multisystemic abnormalities, including craniofacial dysmorphology and cognitive defects. It is caused by a hemizygous microdeletion involving up to 28 genes in chromosome 7q11.23. Genotype/phenotype analysis of atypical microdeletions implicates two evolutionary-related transcription factors, GTF2I and GTF2IRD1, as prime candidates for the cause of the facial dysmorphology. RESULTS: Using a targeted Gtf2ird1 knockout mouse, we employed massively-parallel sequencing of mRNA (RNA-Seq) to understand changes in the transcriptional landscape associated with inactivation of Gtf2ird1 in lip tissue. We found widespread dysregulation of genes including differential expression of 78 transcription factors or coactivators, several involved in organ development including Hey1, Myf6, Myog, Dlx2, Gli1, Gli2, Lhx2, Pou3f3, Sox2, Foxp3. We also found that the absence of GTF2IRD1 is associated with increased expression of genes involved in cellular proliferation, including growth factors consistent with the observed phenotype of extreme thickening of the epidermis. At the same time, there was a decrease in the expression of genes involved in other signalling mechanisms, including the Wnt pathway, indicating dysregulation in the complex networks necessary for epidermal differentiation and facial skin patterning. Several of the differentially expressed genes have known roles in both tissue development and neurological function, such as the transcription factor Lhx2 which regulates several genes involved in both skin and brain development. CONCLUSIONS: Gtf2ird1 inactivation results in widespread gene dysregulation, some of which may be due to the secondary consequences of gene regulatory network disruptions involving several transcription factors and signalling molecules. Genes involved in growth factor signalling and cell cycle progression were identified as particularly important for explaining the skin dysmorphology observed in this mouse model. We have noted that a number of the dysregulated genes have known roles in brain development as well as epidermal differentiation and maintenance. Therefore, this study provides clues as to the underlying mechanisms that may be involved in the broader profile of WBS.


Asunto(s)
Epidermis/metabolismo , Estudios de Asociación Genética , Proteínas Musculares/genética , Proteínas Nucleares/genética , Transactivadores/genética , Síndrome de Williams/genética , Animales , Análisis por Conglomerados , Biología Computacional/métodos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Ratones Noqueados , Modelos Biológicos , Proteínas Musculares/deficiencia , Proteínas Musculares/metabolismo , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Fenotipo , Reproducibilidad de los Resultados , Transducción de Señal , Transactivadores/deficiencia , Transactivadores/metabolismo , Síndrome de Williams/diagnóstico , Síndrome de Williams/metabolismo
15.
Nat Mater ; 19(2): 135-136, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31988525
16.
Hum Mol Genet ; 22(19): 3987-97, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23736297

RESUMEN

More than 200 mutations in the skeletal muscle α-actin gene (ACTA1) cause either dominant or recessive skeletal muscle disease. Currently, there are no specific therapies. Cardiac α-actin is 99% identical to skeletal muscle α-actin and the predominant actin isoform in fetal muscle. We previously showed cardiac α-actin can substitute for skeletal muscle α-actin, preventing the early postnatal death of Acta1 knock-out mice, which model recessive ACTA1 disease. Dominant ACTA1 disease is caused by the presence of 'poison' mutant actin protein. Experimental and anecdotal evidence nevertheless indicates that the severity of dominant ACTA1 disease is modulated by the relative amount of mutant skeletal muscle α-actin protein present. Thus, we investigated whether transgenic over-expression of cardiac α-actin in postnatal skeletal muscle could ameliorate the phenotype of mouse models of severe dominant ACTA1 disease. In one model, lethality of ACTA1(D286G). Acta1(+/-) mice was reduced from ∼59% before 30 days of age to ∼12%. In the other model, Acta1(H40Y), in which ∼80% of male mice die by 5 months of age, the cardiac α-actin transgene did not significantly improve survival. Hence cardiac α-actin over-expression is likely to be therapeutic for at least some dominant ACTA1 mutations. The reason cardiac α-actin was not effective in the Acta1(H40Y) mice is uncertain. We showed that the Acta1(H40Y) mice had endogenously elevated levels of cardiac α-actin in skeletal muscles, a finding not reported in dominant ACTA1 patients.


Asunto(s)
Actinas/genética , Actinas/metabolismo , Terapia Genética , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/terapia , Miocardio/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Genes Recesivos , Humanos , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/mortalidad , Mutación , Fenotipo
17.
Hum Genet ; 134(10): 1099-115, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26275350

RESUMEN

GTF2IRD1 is one of the three members of the GTF2I gene family, clustered on chromosome 7 within a 1.8 Mb region that is prone to duplications and deletions in humans. Hemizygous deletions cause Williams-Beuren syndrome (WBS) and duplications cause WBS duplication syndrome. These copy number variations disturb a variety of developmental systems and neurological functions. Human mapping data and analyses of knockout mice show that GTF2IRD1 and GTF2I underpin the craniofacial abnormalities, mental retardation, visuospatial deficits and hypersociability of WBS. However, the cellular role of the GTF2IRD1 protein is poorly understood due to its very low abundance and a paucity of reagents. Here, for the first time, we show that endogenous GTF2IRD1 has a punctate pattern in the nuclei of cultured human cell lines and neurons. To probe the functional relationships of GTF2IRD1 in an unbiased manner, yeast two-hybrid libraries were screened, isolating 38 novel interaction partners, which were validated in mammalian cell lines. These relationships illustrate GTF2IRD1 function, as the isolated partners are mostly involved in chromatin modification and transcriptional regulation, whilst others indicate an unexpected role in connection with the primary cilium. Mapping of the sites of protein interaction also indicates key features regarding the evolution of the GTF2IRD1 protein. These data provide a visual and molecular basis for GTF2IRD1 nuclear function that will lead to an understanding of its role in brain, behaviour and human disease.


Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Ensamble y Desensamble de Cromatina , Cilios/metabolismo , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Musculares/química , Proteínas Nucleares/química , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Transactivadores/química , Técnicas del Sistema de Dos Híbridos
18.
Mol Cell Neurosci ; 58: 11-21, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24211701

RESUMEN

BACKGROUND: The actin cytoskeleton is critically involved in the regulation of neurite outgrowth. RESULTS: The actin cytoskeleton-associated protein tropomyosin induces neurite outgrowth in B35 neuroblastoma cells and regulates neurite branching in an isoform-dependent manner. CONCLUSIONS: Our data indicate that tropomyosins are key regulators of the actin cytoskeleton during neurite outgrowth. SIGNIFICANCE: Revealing the molecular machinery that regulates the actin cytoskeleton during neurite outgrowth may provide new therapeutic strategies to promote neurite regeneration after nerve injury. SUMMARY: The formation of a branched network of neurites between communicating neurons is required for all higher functions in the nervous system. The dynamics of the actin cytoskeleton is fundamental to morphological changes in cell shape and the establishment of these branched networks. The actin-associated proteins tropomyosins have previously been shown to impact on different aspects of neurite formation. Here we demonstrate that an increased expression of tropomyosins is sufficient to induce the formation of neurites in B35 neuroblastoma cells. Furthermore, our data highlight the functional diversity of different tropomyosin isoforms during neuritogenesis. Tropomyosins differentially impact on the expression levels of the actin filament bundling protein fascin and increase the formation of filopodia along the length of neurites. Our data suggest that tropomyosins are central regulators of actin filament populations which drive distinct aspects of neuronal morphogenesis.


Asunto(s)
Conos de Crecimiento/metabolismo , Neuritas/metabolismo , Neurogénesis , Tropomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neuroblastoma/metabolismo , Isoformas de Proteínas/metabolismo , Seudópodos/metabolismo , Ratas
19.
J Cell Sci ; 125(Pt 21): 5040-50, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22899722

RESUMEN

GTF2IRD2 belongs to a family of transcriptional regulators (including TFII-I and GTF2IRD1) that are responsible for many of the key features of Williams-Beuren syndrome (WBS). Sequence evidence suggests that GTF2IRD2 arose in eutherian mammals by duplication and divergence from the gene encoding TFII-I. However, in GTF2IRD2, most of the C-terminal domain has been lost and replaced by the domesticated remnant of an in-frame hAT-transposon mobile element. In this first experimental analysis of function, we show that transgenic expression of each of the three family members in skeletal muscle causes significant fiber type shifts, but the GTF2IRD2 protein causes an extreme shift in the opposite direction to the two other family members. Mating of GTF2IRD1 and GTF2IRD2 mice restores the fiber type balance, indicating an antagonistic relationship between these two paralogs. In cells, GTF2IRD2 localizes to cytoplasmic microtubules and discrete speckles in the nuclear periphery. We show that it can interact directly with TFII-Iß and GTF2IRD1, and upon co-transfection changes the normal distribution of these two proteins into a punctate nuclear pattern typical of GTF2IRD2. These data suggest that GTF2IRD2 has evolved as a regulator of GTF2IRD1 and TFII-I; inhibiting their function by direct interaction and sequestration into inactive nuclear zones.


Asunto(s)
Secuencias Repetitivas Esparcidas , Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Factores de Transcripción TFII/metabolismo , Síndrome de Williams/genética , Secuencia de Aminoácidos , Animales , Células COS , Bovinos , Núcleo Celular , Chlorocebus aethiops , Evolución Molecular , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Microtúbulos/metabolismo , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Células 3T3 NIH , Transporte de Proteínas , Homología de Secuencia de Aminoácido
20.
Arch Biochem Biophys ; 564: 37-42, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25261348

RESUMEN

Nemaline myopathy, the most common congenital myopathy, is characterized by mutations in genes encoding myofilament proteins such as skeletal α-actin. These mutations are thought to ultimately lead to skeletal muscle weakness. Interestingly, some of the mutations appear to be more potent in males than in females. The underlying mechanisms remain obscure but may be related to sex-specific differences in the myofilament function of both limb and respiratory muscles. To verify this, in the present study, we used skeletal muscles (tibialis anterior and diaphragm) from a transgenic mouse model harbouring the His40Tyr amino acid substitution in skeletal α-actin. In this animal model, 60% of males die by 13weeks of age (the underlying causes of death are obscure but probably due to respiratory insufficiency) whereas females have a normal lifespan. By recording and analysing the mechanics of membrane-permeabilized myofibres, we only observed sex-related differences in the tibialis anterior muscles. Indeed, the concomitant deficits in maximal steady-state isometric force and stiffness of myofibres were less exacerbated in transgenic females than in males, potentially explaining the lower potency in limb muscles. However, the absence of sex-difference in the diaphragm muscles was rather unexpected and suggests that myofilament dysfunction does not solely underlie the sexually dimorphic phenotypes.


Asunto(s)
Diafragma , Miofibrillas , Miopatías Nemalínicas , Caracteres Sexuales , Actinas/genética , Actinas/metabolismo , Animales , Diafragma/metabolismo , Diafragma/patología , Diafragma/fisiopatología , Modelos Animales de Enfermedad , Femenino , Contracción Isométrica/genética , Masculino , Ratones , Ratones Transgénicos , Mutación , Miofibrillas/genética , Miofibrillas/metabolismo , Miofibrillas/patología , Miopatías Nemalínicas/genética , Miopatías Nemalínicas/metabolismo , Miopatías Nemalínicas/patología , Miopatías Nemalínicas/fisiopatología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA