Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30997362

RESUMEN

The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX's scientific objectives are to quantify CO2 and CH4 emission rates at 1 km resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer) temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

2.
Appl Opt ; 41(18): 3530-7, 2002 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12078677

RESUMEN

Radiometric calibration of an airborne CO2 pulsed Doppler lidar has been accomplished with surface retroreflection signals from the White Sands National Monument, New Mexico. Two circular passes were made at altitudes of 6.3 and 9.3 km. The computed calibration factors for both altitudes are in excellent agreement with the value derived from standard ground-based measurements involving a fixed sandpaper target of known reflectance. This finding corroborates a previous study that successfully calibrated an airborne cw Doppler lidar with a variety of natural Earth surfaces. The present results indicate that relatively uniform Earth surface targets can be used for in-flight calibration of CO2 pulsed airborne and, in principal, other infrared lidars.

3.
Appl Opt ; 41(33): 6941-9, 2002 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-12463238

RESUMEN

Concurrent measurements of sea-surface retroreflectance and associated wind velocity acquired with an airborne CO2 Doppler lidar are described. These observations provide further insight into thermal infrared optical phenomenology of air-sea interface processes, contribute to a greater understanding of radiation transfer between the atmosphere and the hydrosphere, and enable improved models of wind-driven ocean-surface stress applicable to other remote sensing applications. In particular, we present lidar measurements of azimuthally anisotropic reflectance behavior and discuss the implications to current understanding of sea-surface optical properties.

4.
Appl Opt ; 43(15): 3110-21, 2004 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15176200

RESUMEN

The design and preliminary tests of an automated differential absorption lidar (DIAL) that profiles water vapor in the lower troposphere are presented. The instrument, named CODI (for compact DIAL), has been developed to be eye safe, low cost, weatherproof, and portable. The lidar design and its unattended operation are described. Nighttime intercomparisons with in situ sensors and a radiosonde are shown. Desired improvements to the lidar, including a more powerful laser, are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA