Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003375

RESUMEN

The selection of components within a formulation or for treatment must stop being arbitrary and must be focused on scientific evidence that supports the inclusion of each one. Therefore, the objective of the present study was to obtain a formulation based on ascorbic acid (AA) and Eudragit FS 30D microparticles containing curcumin-boric acid (CUR-BA) considering interaction studies between the active components carried out via Fourier transform infrared spectrometry (FTIR) and differential scanning calorimetry (DSC) to minimize antagonistic effects, and comprehensively and effectively treat turkey poults infected with Salmonella enteritidis (S. enteritidis). The DSC and FTIR studies clearly demonstrated the interactions between AA, BA, and CUR. Consequently, the combination of AA with CUR and/or BA should be avoided, but not CUR and BA. Furthermore, the Eudragit FS 30D microparticles containing CUR-BA (SD CUR-BA MP) showed a limited release of CUR-BA in an acidic medium, but they were released at a pH 6.8-7.0, which reduced the interactions between CUR-BA and AA. Finally, in the S. enteritidis infection model, turkey poults treated with the combination of AA and SD CUR-BA MP presented lower counts of S. enteritidis in cecal tonsils after 10 days of treatment. These results pointed out that the use of an adequate combination of AA and CUR-BA as an integral treatment of S. enteritidis infections could be a viable option to replace the indiscriminate use of antibiotics.


Asunto(s)
Curcumina , Animales , Curcumina/química , Salmonella enteritidis , Preparaciones de Acción Retardada , Ácido Ascórbico/farmacología , Pavos , Antibacterianos
2.
Am J Physiol Regul Integr Comp Physiol ; 308(3): R173-87, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25502749

RESUMEN

Orexin A and B, orexigenic peptides produced primarily by the lateral hypothalamus that signal through two G protein-coupled receptors, orexin receptors 1/2, have been implicated in the regulation of several physiological processes in mammals. In avian (nonmammalian vertebrates) species; however, the physiological roles of orexin are not well defined. Here, we provide novel evidence that not only is orexin and its related receptors 1/2 (ORXR1/2) expressed in chicken muscle tissue and quail muscle (QM7) cell line, orexin appears to be a secretory protein in QM7 cells. In vitro administration of recombinant orexin A and B (rORX-A and B) differentially regulated prepro-orexin expression in a dose-dependent manner with up-regulation for rORX-A (P < 0.05) and downregulation for rORX-B (P < 0.05) in QM7 cells. While both peptides upregulated ORXR1 expression, only a high dose of rORX-B decreased the expression of ORXR2 (P < 0.05). The presence of orexin and its related receptors and the regulation of its own system in avian muscle cells indicate that orexin may have autocrine, paracrine, and/or endocrine roles. rORXs differentially regulated mitochondrial dynamics network. While rORX-A significantly induced the expression of mitochondrial fission-related genes (DNM1, MTFP1, MTFR1), rORX-B increased the expression of mitofusin 2, OPA1, and OMA1 genes that are involved in mitochondrial fusion. Concomitant with these changes, rORXs differentially regulated the expression of several mitochondrial metabolic genes (av-UCP, av-ANT, Ski, and NRF-1) and their related transcriptional regulators (PPARγ, PPARα, PGC-1α, PGC-1ß, and FoxO-1) without affecting ATP synthesis. Taken together, our data represent the first evidence of the presence and secretion of orexin system in the muscle of nonmammalian species and its role in mitochondrial fusion and fission, probably through mitochondrial-related genes and their related transcription factors.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Dinámicas Mitocondriales/fisiología , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Neuropéptidos/metabolismo , Factores de Transcripción/metabolismo , Animales , Pollos , Femenino , Regulación de la Expresión Génica/fisiología , Masculino , Mitocondrias/metabolismo , Orexinas , Regulación hacia Arriba/fisiología
3.
Microb Ecol Health Dis ; 26: 25876, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25651994

RESUMEN

The fields of immunology, microbiology, and nutrition converge in an astonishing way. Dietary ingredients have a profound effect on the composition of the gut microflora, which in turn regulates the physiology of metazoans. As such, nutritional components of the diet are of critical importance not only for meeting the nutrient requirements of the host, but also for the microbiome. During their coevolution, bacterial microbiota has established multiple mechanisms to influence the eukaryotic host, generally in a beneficial fashion. The microbiome encrypts a variety of metabolic functions that complements the physiology of their hosts. Over a century ago Eli Metchnikoff proposed the revolutionary idea to consume viable bacteria to promote health by modulating the intestinal microflora. The idea is more applicable now than ever, since bacterial antimicrobial resistance has become a serious worldwide problem both in medical and agricultural fields. The impending ban of antibiotics in animal feed due to the current concern over the spread of antibiotic resistance genes makes a compelling case for the development of alternative prophylactics. Nutritional approaches to counteract the debilitating effects of stress and infection may provide producers with useful alternatives to antibiotics. Improving the disease resistance of animals grown without antibiotics will benefit the animals' health, welfare, and production efficiency, and is also a key strategy in the effort to improve the microbiological safe status of animal-derived food products (e.g. by poultry, rabbits, ruminants, or pigs). This review presents some of the alternatives currently used in food-producing animals to influence their health in relation to human health.

4.
Foodborne Pathog Dis ; 11(2): 165-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24237042

RESUMEN

Public concern with the incidence of antibiotic-resistant bacteria, particularly among foodborne pathogens such as Salmonella, has been challenging the poultry industry to find alternative means of control. The purposes of the present study were to evaluate in vitro and in vivo effects of chitosan on Salmonella enterica serovar Typhimurium (ST) infection in broiler chicks. For in vitro crop assay experiments, tubes containing feed, water, and ST were treated with either saline as a control or 0.2% chitosan. The entire assay was repeated in three trials. In two independent in vivo trials, 40 broiler chicks were assigned to an untreated control diet or dietary treatment with 0.2% chitosan for 7 days (20 broiler chicks/treatment). At day 4, chicks were challenged with 2×105 colony-forming units (CFU) ST/bird. In a third in vivo trial, 100 broiler chicks were assigned to untreated control diet or dietary treatment with 0.2% chitosan for 10 days (50 broiler chicks/treatment) to evaluate ST horizontal transmission. At day 3, 10 birds were challenged with 105 CFU ST/bird, and the remaining nonchallenged birds (n=40) were kept in the same floor pen. In all three in vitro trials, 0.2% chitosan significantly reduced total CFU of ST at 0.5 and 6 h postinoculation compared with control (p<0.05). In two in vivo trials, at 7 days, dietary 0.2% chitosan significantly reduced total CFU of recovered ST in the ceca in both experiments. Dietary 0.2% chitosan significantly reduced total ST CFU recovered in the ceca of horizontally challenged birds in the third in vivo trial. Chitosan at 0.2% significantly reduced the CFU of recovered ST in vitro and in vivo, proving to be an alternative tool to reduce crop, ceca, and consequently carcass ST contamination as well as decreasing the amount of ST shed to the environment.


Asunto(s)
Pollos/microbiología , Quitosano/farmacología , Salmonella typhimurium/efectos de los fármacos , Alimentación Animal/análisis , Animales , Derrame de Bacterias , Recuento de Colonia Microbiana , Contaminación de Alimentos/prevención & control , Microbiología de Alimentos , Salmonella typhimurium/aislamiento & purificación
5.
Toxins (Basel) ; 16(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38535788

RESUMEN

A recent study published data on the growth performance, relative weights of the organs of the gastrointestinal tract, liver histology, serum biochemistry, and hematological parameters for turkey poults fed an experimental diet contaminated with aflatoxin B1 (AFB1) and humic acids (HA) extracted from vermicompost. The negative effects of AFB1 (250 ng AFB1/g of feed) were significantly reduced by HA supplementation (0.25% w/w), suggesting that HA might be utilized to ameliorate the negative impact of AFB1 from contaminated diets. The present study shows the results of the remaining variables, as an extension of a previously published work which aimed to evaluate the impact of HA on the intestinal microbiota, gut integrity, ileum morphometry, and cellular immunity of turkey poults fed an AFB1-contaminated diet. For this objective, five equal groups of 1-day-old female Nicholas-700 turkey poults were randomly assigned to the following treatments: negative control (basal diet), positive control (basal diet + 250 ng AFB1/g), HA (basal diet + 0.25% HA), HA + AFB1 (basal diet + 0.25% HA + 250 ng AFB1/g), and Zeolite (basal diet + 0.25% zeolite + 250 ng AFB1/g). In the experiment, seven replicates of ten poults each were used per treatment (n = 70). In general, HA supplementation with or without the presence of AFB1 showed a significant increase (p < 0.05) in the number of beneficial butyric acid producers, ileum villi height, and ileum total area, and a significant reduction in serum levels of fluorescein isothiocyanate-dextran (FITC-d), a marker of intestinal integrity. In contrast, poults fed with AFB1 showed a significant increase in Proteobacteria and lower numbers of beneficial bacteria, clearly suggesting gut dysbacteriosis. Moreover, poults supplemented with AFB1 displayed the lowest morphometric parameters and the highest intestinal permeability. Furthermore, poults in the negative and positive control treatments had the lowest cutaneous basophil hypersensitivity response. These findings suggest that HA supplementation enhanced intestinal integrity (shape and permeability), cellular immune response, and healthier gut microbiota composition, even in the presence of dietary exposure to AFB1. These results complement those of the previously published study, suggesting that HA may be a viable dietary intervention to improve gut health and immunity in turkey poults during aflatoxicosis.


Asunto(s)
Microbioma Gastrointestinal , Zeolitas , Animales , Femenino , Aflatoxina B1 , Ácido Butírico , Dieta , Sustancias Húmicas , Inmunidad Celular , Pavos
6.
Poult Sci ; 102(6): 102642, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37043956

RESUMEN

One method of prevention of coccidiosis in broiler chickens raised without antibiotics relies on coccidiosis vaccination. Live-coccidiosis vaccines carry the risk for pathogenic effects if the Eimeria species overcycle. However, all chicks must receive an appropriate dose of Eimeria oocysts to induce immunity and reduce the risk of adverse effects. At the hatchery, coccidiosis vaccines are administered topically to boxes of chicks by spray or gel-droplet application. Determining the volume of vaccine ingested by individual chicks could provide a means of evaluating the success of different application methods. For each of 2 mass application methods (spray, gel-droplet), we used 3 quantification methodologies to determine the amount of vaccine material ingested by chicks: total oocyst counts from feces collected 5- to 8-days postvaccination; and counts of either microsphere or fluorescein tracers recovered from the gastrointestinal tract 30-min postvaccination. For each quantification methodology, chicks vaccinated via spray or gel-droplet application were compared to chicks vaccinated via oral gavage using the same concentration of oocysts per mL for all groups. Chicks vaccinated via gel-droplet application shed 10-fold more oocysts than those vaccinated by spray application. Individual chick consumption of vaccine material using tracers also revealed that chicks ingested more material following gel-droplet application than spray application, although the magnitude of the difference varied based on quantification methodology. The results of this study suggest that all 3 quantification methodologies can be used to help validate and improve mass vaccine application methods to ensure optimal ingestion, and therefore, coccidiosis vaccination success.


Asunto(s)
Coccidiosis , Eimeria , Enfermedades de las Aves de Corral , Vacunas Antiprotozoos , Animales , Pollos , Oocistos , Microesferas , Enfermedades de las Aves de Corral/prevención & control , Coccidiosis/prevención & control , Coccidiosis/veterinaria , Vacunas Atenuadas , Vacunación/veterinaria , Vacunación/métodos , Fluoresceínas , Ingestión de Alimentos
7.
Vet Sci ; 11(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38250922

RESUMEN

To assess effects of environmental heat stress (HS) on the local and systemic inflammatory responses to lipopolysaccharide (LPS), broilers were reared under thermoneutral (TN) or cyclic HS conditions. Thermoneutral temperatures followed commercial production settings, with HS broilers exposed to 35 °C for 14 h/day from 4 days onward. At 37 days, HS- and TN-broilers were assigned to either LPS (100 µg/mL) or endotoxin-free phosphate-buffered saline (PBS; vehicle) treatments, eight each to HS- and TN-LPS, four each to HS- and TN-PBS. Treatments were administered by intradermal injection of growing feather (GF) pulps; 10 µL/GF; 12 GF/broiler. Blood and GF were collected before and at 6 and 24 h post-injection to assess leukocyte population changes in GF-pulps and blood, reactive oxygen species (ROS) generation and cytokine expression in GF-pulps, and plasma concentrations of alpha-1 acid glycoprotein (AGP-1). HS-LPS broilers had lower (p ≤ 0.05) infiltration of heterophils and macrophages, ROS generation, and inflammatory cytokine expression in GF-pulps, and lacked the increases in heterophil, monocyte, and plasma AGP-1 concentrations observed in TN-LPS broilers. HS-broilers had similar or greater drops in blood lymphocytes 6 h post-LPS or -PBS injection, respectively, and lower baseline levels (p ≤ 0.05) of circulating T- and B-lymphocytes than TN-broilers. Results indicated that cyclic HS reduced the local and systemic acute inflammatory responses to LPS in broilers, likely impairing their innate defense against microbial infection.

8.
Toxins (Basel) ; 15(2)2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36828398

RESUMEN

Vermicompost was used for humic acid (HA) preparation, and the adsorption of aflatoxin B1 (AFB1) was investigated. Two forms of HA were evaluated, natural HA and sodium-free HA (SFHA). As a reference, a non-commercial zeolitic material was employed. The adsorbents were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), energy-dispersive X-ray spectroscopy (EDS), zeta potential (ζ-potential), scanning electron microscopy (SEM), and point of zero charge (pHpzc). The adsorbent capacity of the materials when added to an AFB1-contaminated diet (100 µg AFB1/kg) was evaluated using an in vitro model that simulates the digestive tract of chickens. Characterization results revealed the primary functional groups in HA and SFHA were carboxyl and phenol. Furthermore, adsorbents have a highly negative ζ-potential at the three simulated pH values. Therefore, it appears the main influencing factors for AFB1 adsorption are electrostatic interactions and hydrogen bonding. Moreover, the bioavailability of AFB1 in the intestinal section was dramatically decreased when sorbents were added to the diet (0.2%, w/w). The highest AFB1 adsorption percentages using HA and SFHA were 97.6% and 99.7%, respectively. The zeolitic material had a considerable adsorption (81.5%). From these results, it can be concluded that HA and SFHA from vermicompost could be used as potential adsorbents to remove AFB1 from contaminated feeds.


Asunto(s)
Aflatoxina B1 , Zeolitas , Animales , Aflatoxina B1/química , Aves de Corral , Sustancias Húmicas , Pollos , Adsorción , Zeolitas/química
9.
Front Vet Sci ; 10: 1226298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37496751

RESUMEN

Introduction: Coccidiosis caused by the Eimeria spp., an Apicomplexan protozoon, is a major intestinal disease that affects the poultry industry. Although most cases of coccidiosis are subclinical, Eimeria infections impair bird health and decrease overall performance, which can result in compromised welfare and major economic losses. Viable sporulated Eimeria oocysts are required for challenge studies and live coccidiosis vaccines. Potassium dichromate (PDC) is typically used as a preservative for these stocks during storage. Although effective and inexpensive, PDC is also toxic and carcinogenic. Chlorhexidine (CHX) salts may be a possible alternative, as this is a widely used disinfectant with less toxicity and no known carcinogenic associations. Methods: In vitro testing of CHX gluconate and CHX digluconate exhibited comparable oocyst integrity and viability maintenance with equivalent bacteriostatic and bactericidal activity to PDC. Subsequent use of CHX gluconate or digluconate-preserved Eimeria oocysts, cold-stored at 4°C for 5 months, as the inoculum also resulted in similar oocyst shedding and recovery rates when compared to PDC-preserved oocysts. Results and discussion: These data show that using 0.20% CHX gluconate could be a suitable replacement for PDC. Additionally, autofluorescence was used as a method to evaluate oocyst viability. Administration of artificially aged oocysts exhibiting >99% autofluorescence from each preserved treatment resulted in no oocyst output for CHX salt groups.

10.
Front Vet Sci ; 10: 1224647, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662988

RESUMEN

A mixed Eimeria spp. challenge model was designed to assess the effects of challenge on broiler chicken performance, intestinal integrity, and the gut microbiome for future use to evaluate alternative strategies for controlling coccidiosis in broiler chickens. The experimental design involved broiler chickens divided into two groups: a control group (uninfected) and a positive control group, infected with Eimeria acervulina (EA), Eimeria maxima (EM), and Eimeria tenella (ET). At day-of-hatch, 240 off-sex male broiler chicks were randomized and allocated to one of two treatment groups. The treatment groups included: (1) Non-challenged (NC, n = 5 replicate pens); and (2) challenged control (PC, n = 7 replicate pens) with 20 chickens/pen. Pen weights were recorded at d0, d16, d31, d42, and d52 to determine average body weight (BW) and (BWG). Feed intake was measured at d16, d31, d42, and d52 to calculate feed conversion ratio (FCR). Four diet phases included a starter d0-16, grower d16-31, finisher d31-42, and withdrawal d42-52 diet. At d18, chickens were orally challenged with 200 EA, 3,000 EM, and 500 ET sporulated oocysts/chicken. At d24 (6-day post-challenge) and d37 (19-day post-challenge), intestinal lesion scores were recorded. Additionally, at d24, FITC-d was used as a biomarker to evaluate intestinal permeability and ileal tissue sections were collected for histopathology and gene expression of tight junction proteins. Ileal and cecal contents were also collected to assess the impact of challenge on the microbiome. BWG and FCR from d16-31 was significantly (p < 0.05) reduced in PC compared to NC. At d24, intestinal lesion scores were markedly higher in the PC compared to the NC. Intestinal permeability was significantly increased in the PC group based on serum FITC-d levels. Cadherin 1 (CDH1), calprotectin (CALPR), and connexin 45 (Cx45) expression was also upregulated in the ileum of the PC group at d24 (6-day post-challenge) while villin 1 (VIL1) was downregulated in the ileum of the PC group. Additionally, Clostridium perfringens (ASV1) was enriched in the cecal content of the PC group. This model could be used to assess the effect of alternative coccidiosis control methods during the post-challenge with EA, EM, and ET.

11.
Front Physiol ; 14: 1184636, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324386

RESUMEN

Essential oils (EO) affect performance, intestinal integrity, bone mineralization, and meat quality in broiler chickens subjected to cyclic heat stress (HS). Day-of-hatch Cobb 500 male broiler chicks (n = 475) were randomly divided into four groups. Group 1: No heat stress (Thermoneutral) + control diets with no antibiotics; Group 2: heat stress control + control diets; Group 3: heat stress + control diets supplemented with thymol chemotype (45 ppm) and herbal betaine (150 ppm) formulation EO1; Group 4: heat stress + control diets supplemented with phellandrene (45 ppm) and herbal betaine (150 ppm) formulation EO2. From day 10-42, the heat stress groups were exposed to cyclic HS at 35°C for 12 h (8:00-20:00). BW, BWG, FI, and FCRc were measured at d 0, 10, 28, and 42. Chickens were orally gavaged with FITC-d on days 10 (before heat stress) and 42. Morphometric analysis of duodenum and ileum samples and bone mineralization of tibias were done. Meat quality was assessed on day 43 with ten chickens per pen per treatment. Heat stress reduced BW by day 28 (p < 0.05) compared to thermoneutral chickens. At the end of the trial, chickens that received both formulations of EO1 and EO2 had significantly higher BW than HS control chickens. A similar trend was observed for BWG. FCRc was impaired by EO2 supplementation. There was a significant increase in total mortality in EO2 compared with EO1 EO1 chickens had lower FITC-d concentrations at day 42 than the HS control. In addition, EO1 treatment is not statistically different if compared to EO2 and thermoneutral. Control HS broilers had significantly lower tibia breaking strength and total ash at day 42 than heat-stressed chickens supplemented with EO1 and EO2. Heat stress affected intestinal morphology more than thermoneutral chickens. EO1 and EO2 improved intestinal morphology in heat-stressed chickens. Woody breast and white striping were more common in thermoneutral chickens than heat stress chickens. In conclusion, the EO-containing diet could improve broiler chicken growth during cyclic heat stress, becoming increasingly relevant in antibiotic-free production in harsh climates.

12.
Front Vet Sci ; 10: 1276754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37881447

RESUMEN

This study aims to evaluate the efficacy of humic acid (HA) from worm compost as an adsorbent for aflatoxin B1 (AFB1) in turkey poults. The experiment involved the inclusion of 0.25% (w/w) HA in the diet of turkey poults consuming aflatoxin-contaminated feed (250 ng AFB1/g). A total of 350 1-day-old female Nicholas-700 turkey poults were randomly allocated to five equal groups: negative control (basal diet); positive control (basal diet + 250 ng AFB1/g; HA (basal diet + 0.25% HA); HA + AFB1 (basal diet + HA + 250 ng AFB1/g); and zeolite + AFB1 (basal diet + 0.25% zeolite + 250 ng AFB1/g). Each group had seven replicates of 10 poults (n = 70). The impact of HA addition was evaluated in terms of performance parameters, relative organ weights, liver histological lesions, and serum biochemical and hematological constituents. In general, the addition of HA improved body weight (BW), body weight gain (BWG), and feed conversion rate (FCR). Furthermore, HA effectively mitigated the toxic effects caused by AFB1 in the majority of the analyzed variables. The results indicated that HA effectively counteracted the AFB1-induced toxic effects in turkey poults. Based on these findings, it can be concluded that HA is capable of removing AFB1 from the contaminated diet.

14.
Front Vet Sci ; 9: 880738, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601402

RESUMEN

Histomonas meleagridis, the etiological agent of histomonosis, is a poultry parasite primarily detrimental to turkeys. Characteristic lesions occur in the liver and ceca, with mortalities in turkey flocks often reaching 80-100%. Chickens and other gallinaceous birds can be susceptible but the disease was primarily considered sub-clinical until recent years. Treating and preventing H. meleagridis infection have become more difficult since 2015, when nitarsone was voluntarily removed from the market, leaving the poultry industry with no approved prophylactics, therapeutics, or vaccines to combat histomonosis. Phytogenic compounds evaluated for chemoprophylaxis of histomonosis have varied results with in vitro and in vivo experiments. Some recent research successes are encouraging for the pursuit of antihistomonal compounds derived from plants. Turkeys and chickens exhibit a level of resistance to re-infection when recovered from H. meleagridis infection, but no commercial vaccines are yet available, despite experimental successes. Safety and stability of live-attenuated isolates have been demonstrated; furthermore, highly efficacious protection has been conferred in experimental settings with administration of these isolates without harming performance. Taken together, these research advancements are encouraging for vaccine development, but further investigation is necessary to evaluate proper administration age, dose, and route. A summary of the published research is provided in this review.

15.
Front Vet Sci ; 9: 937102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847644

RESUMEN

Outbreaks of histomonosis in turkeys are typically initiated by the ingestion of contaminated embryonated eggs of Heterakis gallinarum, potentially present in earthworms and mechanical vectors. Once an outbreak is started, infected turkeys can transmit the disease by horizontal transmission. Factors influencing horizontal transmission of histomonosis are poorly understood. Replication of horizontal transmission in experimental conditions has not been consistent, presenting an obstacle in searching for alternatives to prevent or treat the disease. Two pilot experiments and three validation experiments were conducted in the present study. In pilot experiment 1, one isolate of Histomonas meleagridis (named Buford) was used. Turkeys were fed a low-nutrient density diet corn-soy based (LOW-CS) and raised in floor pens. In pilot experiment 2, another isolate of H. meleagridis was used (named PHL). Turkeys were fed a low-nutrient density diet with the addition of wheat middlings (LOW-WM) and raised in floor pens. In experiment 3, conducted on floor pens, both isolates and diets were used in different groups. In experiment 4, turkeys were raised on battery cages and only the PHL isolate was used. Both diets (LOW-WM and LOW-CS) were used, in addition to a diet surpassing the nutritional needs of young poults (turkey starter, TS). In experiment 5, conducted in battery cages, only the PHL isolate was used, and the LOW-WM and TS diets were in different groups. The horizontal transmission was achieved only with the PHL isolate from all experiments. The transmission rate varied among experimental diets, with the TS diet having the lowest transmission rate in experiments 4 and 5. Variation was observed between experiments and within experimental groups.

16.
Front Vet Sci ; 9: 784387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35274019

RESUMEN

The three Bacillus strains present in Norum™ were initially selected by their excellent to good relative enzyme activity (REA) production score for amylase, protease, lipase, phytase, cellulase, ß-glucanase, and xylanase. Further studies confirmed that the three isolates also showed an antibacterial activity, Gram-positive and Gram-negative poultry pathogens. Norum™ (Eco-Bio/Euxxis Bioscience LLC) is a Bacillus spore direct-fed microbial (DFM). The Bacillus isolates were screened and selected based on in vitro enzyme production profiles. Moreover, in chickens fed high non-starch polysaccharides, this DFM demonstrated to reduce digesta viscosity, bacterial translocation, increase performance, bone mineralization, and balance the intestinal microbiota. In the present study, we present the whole-genome sequence of each of the three isolates in Norum™, as well as the synergistic, additive, or antagonistic effects on the enzyme production behavior of the three Bacillus strains and their combinations when grown together vs. when grown individually. The whole-genome sequence identified isolate AM1002 as Bacillus subtilis (isolate 1), isolate AM0938 as Bacillus amyloliquefaciens (isolate 2), and isolate JD17 as Bacillus licheniformis (isolate 3). The three Bacillus isolates used in the present study produce different enzymes (xylanase, cellulase, phytase, lipase, protease, and ß-glucanase). However, this production was modified when two or more Bacillus strains were combined, suggesting possible synergistic, antagonistic, or additive interactions. The Bliss analysis suggested (p < 0.05) that the combination of Bacillus strains 1-2 and 1-2-3 had intermediate effects and predicted that the combination of Bacillus strains 2-3 could have better effects than the combination of all the three Bacillus strains. In summary, the current study demonstrated the need of selecting Bacillus strains based on quantitative enzyme determination and data analysis to assess the impacts of combinations to avoid antagonistic interactions that could limit treatment efficacy. These results suggest that using Bacillus strains 2-3 together could lead to a new generation of DFMs with effects superior to those already examined in Bacillus strains 1-2-3 and, therefore, a potential alternative to growth-promoting antibiotics. More research utilizing poultry models is being considered to confirm and expand the existing findings.

17.
Animals (Basel) ; 12(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35625119

RESUMEN

The goal of this research was to assess cyclic heat stress on gut permeability, bone mineralization, and meat quality in chickens. Two separate trials were directed. 320 day-of-hatch Cobb 500 male chicks were randomly assigned to four thermoneutral (TN) and four cyclic heat stress (HS) chambers with two pens each, providing eight replicates per treatment in each trial (n = 20 chicks/replicate). Environmental conditions in the TN group were established to simulate commercial production settings. Heat stress chickens were exposed to cyclic HS at 35 °C for 12 h/day from days 7−42. Performance parameters, intestinal permeability, bone parameters, meat quality, and leukocyte proportions were estimated. There was a significant (p < 0.05) reduction in body weight (BW), BW gain, and feed intake, but the feed conversion ratio increased in chickens under cyclic HS. Moreover, HS chickens had a significantly higher gut permeability, monocyte and basophil levels, but less bone mineralization than TN chickens. Nevertheless, the TN group had significant increases in breast yield, woody breast, and white striping in breast fillets compared to HS. These results present an alternative model to our previously published continuous HS model to better reflect commercial conditions to evaluate commercially available nutraceuticals or products with claims of reducing the severity of heat stress.

18.
Pathogens ; 10(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34451506

RESUMEN

Necrotic enteritis (NE), mainly induced by the pathogens of Clostridium perfringens and coccidia, causes huge economic losses with limited intervention options in the poultry industry. This study investigated the role of specific bile acids on NE development. Day-old broiler chicks were assigned to six groups: noninfected, NE, and NE with four bile diets of 0.32% chicken bile, 0.15% commercial ox bile, 0.15% lithocholic acid (LCA), or 0.15% deoxycholic acid (DCA). The birds were infected with Eimeria maxima at day 18 and C. perfringens at day 23 and 24. The infected birds developed clinical NE signs. The NE birds suffered severe ileitis with villus blunting, crypt hyperplasia, epithelial line disintegration, and massive immune cell infiltration, while DCA and LCA prevented the ileitis histopathology. NE induced severe body weight gain (BWG) loss, while only DCA prevented NE-induced BWG loss. Notably, DCA reduced the NE-induced inflammatory response and the colonization and invasion of C. perfringens compared to NE birds. Consistently, NE reduced the total bile acids in the ileal digesta, while dietary DCA and commercial bile restored it. Together, this study showed that DCA and LCA reduced NE histopathology, suggesting that secondary bile acids, but not total bile acid levels, play an essential role in controlling the enteritis.

19.
Poult Sci ; 100(6): 101138, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33975047

RESUMEN

Oral administration of fluorescein isothiocyanate dextran (FITC-d) has been used as an indicator for intestinal permeability in poultry research for several years. Under healthy conditions, tight junctions in the intestinal wall will not allow the 4-6kDa FITC-d to enter the bloodstream. Detection of FITC-d in serum (1-hour post-oral administration of FITC-d) has proven to be a reliable indicator of leaky gut syndrome (increased intestinal inflammation and disruption of tight junctions). Administration of supplementary phytobiotics in feed, particularly products with high beta-carotene levels or other pigments, has resulted in strong serum background fluorescence, which can render this assay unreliable. To account for this increase in background autofluorescence, the FITC-d assay procedure has been modified to accommodate these particular serum samples by including pre-administration serum collection from each treatment group to remove background fluorescence. The modified FITC-d procedure detailed will allow for analysis of intestinal permeability in pigmented serum.


Asunto(s)
Pollos , Aves de Corral , Animales , Dextranos , Dieta/veterinaria , Fluoresceína-5-Isotiocianato/análogos & derivados , Mucosa Intestinal , Permeabilidad
20.
J Anim Sci Biotechnol ; 12(1): 23, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33541441

RESUMEN

BACKGROUND: Interest in the use of natural feed additives as an alternative to antimicrobials in the poultry industry has increased in recent years because of the risk of bacterial resistance. One of the most studied groups are polyphenolic compounds, given their advantages over other types of additives and their easy potentiation of effects when complexes are formed with metal ions. Therefore, the objective of the present study was to evaluate the impact of dietary supplementation of copper acetate (CA), curcumin (CR), and their combination (CA-CR) against Salmonella Typhimurium colonization, intestinal permeability, and cecal microbiota composition in broiler chickens through a laboratory Salmonella infection model. S. Typhimurium recovery was determined on day 10 post-challenge by isolating Salmonella in homogenates of the right cecal tonsil (12 chickens per group) on Xylose Lysine Tergitol-4 (XLT-4) with novobiocin and nalidixic acid. Intestinal integrity was indirectly determined by the fluorometric measurement of fluorescein isothiocyanate dextran (FITC-d) in serum samples from blood obtained on d 10 post-S. Typhimurium challenge. Finally, microbiota analysis was performed using the content of the left caecal tonsil of 5 chickens per group by sequencing V4 region of 16S rRNA gene. RESULTS: The results showed that in two independent studies, all experimental treatments were able to significantly reduce the S. Typhimurium colonization in cecal tonsils (CT, P < 0.0001) compared to the positive control (PC) group. However, only CA-CR was the most effective treatment in reducing S. Typhimurium counts in both independent studies. Furthermore, the serum fluorescein isothiocyanate dextran (FITC-d) concentration in chickens treated with CR was significantly lower when compared to PC (P = 0.0084), which is related to a decrease in intestinal permeability and therefore intestinal integrity. The effect of dietary treatments in reducing Salmonella was further supported by the analysis of 16S rRNA gene sequences using Linear discriminant analysis effect size (LEfSe) since Salmonella was significantly enriched in PC group (LDA score > 2.0 and P < 0.05) compared to other groups. In addition, Coprobacillus, Eubacterium, and Clostridium were significantly higher in the PC group compared to other treatment groups. On the contrary, Fecalibacterium and Enterococcus in CR, unknown genus of Erysipelotrichaceae at CA-CR, and unknown genus of Lachnospiraceae at CA were significantly more abundant respectively. CONCLUSIONS: CR treatment was the most effective treatment to reduce S. Typhimurium intestinal colonization and maintain better intestinal homeostasis which might be achieved through modulation of cecal microbiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA