Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Stereotact Funct Neurosurg ; 101(6): 395-406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37844558

RESUMEN

BACKGROUND: The advent of deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease 30 years ago has ushered a global breakthrough of DBS as a universal method for therapy and research in wide areas of neurology and psychiatry. The literature of the last three decades has described numerous concepts and practices of DBS, often branded as novelties or discoveries. However, reading the contemporary publications often elicits a sense of déjà vu in relation to several methods, attributes, and practices of DBS. Here, we review various applications and techniques of the modern-era DBS and compare them with practices of the past. SUMMARY: Compared with modern literature, publications of the old-era functional stereotactic neurosurgery, including old-era DBS, show that from the very beginning multidisciplinarity and teamwork were often prevalent and insisted upon, ethical concerns were recognized, brain circuitries and rational for brain targets were discussed, surgical indications were similar, closed-loop stimulation was attempted, evaluations of surgical results were debated, and controversies were common. Thus, it appears that virtually everything done today in the field of DBS bears resemblance to old-time practices, or has been done before, albeit with partly other tools and techniques. Movement disorders remain the main indications for modern DBS as was the case for lesional surgery and old-era DBS. The novelties today consist of the STN as the dominant target for DBS, the tremendous advances in computerized brain imaging, the sophistication and versatility of implantable DBS hardware, and the large potential for research. KEY MESSAGES: Many aspects of contemporary DBS bear strong resemblance to practices of the past. The dominant clinical indications remain movement disorders with virtually the same brain targets as in the past, with one exception: the STN. Other novel brain targets - that are so far subject to DBS trials - are the pedunculopontine nucleus for gait freezing, the anteromedial internal pallidum for Gilles de la Tourette and the fornix for Alzheimer's disease. The major innovations and novelties compared to the past concern mainly the unmatched level of research activity, its high degree of sponsorship, and the outstanding advances in technology that have enabled multimodal brain imaging and the miniaturization, versatility, and sophistication of implantable hardware. The greatest benefit for patients today, compared to the past, is the higher level of precision and safety of DBS, and of all functional stereotactic neurosurgery.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Encéfalo/cirugía , Núcleo Subtalámico/cirugía , Enfermedad de Parkinson/terapia , Globo Pálido
2.
Stereotact Funct Neurosurg ; 101(6): 369-379, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37879313

RESUMEN

INTRODUCTION: Deep brain stimulation (DBS) is an established treatment for Parkinson's disease (PD) and other movement disorders. The ventral intermediate nucleus of the thalamus is considered as the target of choice for tremor disorders, including tremor-dominant PD not suitable for DBS in the subthalamic nucleus (STN). In the last decade, several studies have shown promising results on tremor from DBS in the posterior subthalamic area (PSA), including the caudal zona incerta (cZi) located posteromedial to the STN. The aim of this study was to evaluate the long-term effect of unilateral cZi/PSA-DBS in patients with tremor-dominant PD. METHODS: Thirteen patients with PD with medically refractory tremor were included. The patients were evaluated using the motor part of the Unified Parkinson Disease Rating Scale (UPDRS) off/on medication before surgery and off/on medication and stimulation 1-2 years (short-term) after surgery and at a minimum of 3 years after surgery (long-term). RESULTS: At short-term follow-up, DBS improved contralateral tremor by 88% in the off-medication state. This improvement persisted after a mean of 62 months. Contralateral bradykinesia was improved by 40% at short-term and 20% at long-term follow-up, and the total UPDRS-III by 33% at short-term and by 22% at long-term follow-up with stimulation alone. CONCLUSIONS: Unilateral cZi/PSA-DBS seems to remain an effective treatment for patients with severe Parkinsonian tremor several years after surgery. There was also a modest improvement on bradykinesia.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Zona Incerta , Humanos , Temblor/terapia , Temblor/etiología , Estudios de Seguimiento , Hipocinesia/etiología , Hipocinesia/terapia , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Resultado del Tratamiento
3.
Stereotact Funct Neurosurg ; 101(2): 112-134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36809747

RESUMEN

BACKGROUND: Deep brain stimulation has become an established technology for the treatment of patients with a wide variety of conditions, including movement disorders, psychiatric disorders, epilepsy, and pain. Surgery for implantation of DBS devices has enhanced our understanding of human physiology, which in turn has led to advances in DBS technology. Our group has previously published on these advances, proposed future developments, and examined evolving indications for DBS. SUMMARY: The crucial roles of structural MR imaging pre-, intra-, and post-DBS procedure in target visualization and confirmation of targeting are described, with discussion of new MR sequences and higher field strength MRI enabling direct visualization of brain targets. The incorporation of functional and connectivity imaging in procedural workup and their contribution to anatomical modelling is reviewed. Various tools for targeting and implanting electrodes, including frame-based, frameless, and robot-assisted, are surveyed, and their pros and cons are described. Updates on brain atlases and various software used for planning target coordinates and trajectories are presented. The pros and cons of asleep versus awake surgery are discussed. The role and value of microelectrode recording and local field potentials are described, as well as the role of intraoperative stimulation. Technical aspects of novel electrode designs and implantable pulse generators are presented and compared.


Asunto(s)
Neoplasias Encefálicas , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/cirugía , Vigilia , Imagen por Resonancia Magnética , Microelectrodos , Electrodos Implantados
4.
Acta Neurochir (Wien) ; 165(5): 1201-1214, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36056244

RESUMEN

PURPOSE: The aim of this study was to evaluate cognitive effects 12 months after Deep Brain Stimulation (DBS) of the Bed Nucleus of Stria Terminalis (BNST) in patients with refractory Obsessive-Compulsive Disorder (OCD). METHODS: Eight patients (5 female; mean ± SD age 36 ± 15) with OCD were included. A neuropsychological test battery covering verbal and spatial episodic memory, executive function, and attention was administered preoperatively and 12 months after surgery. Medical records were used as a source for descriptive data to probe for any changes not covered by standardized checklists and the Yale-Brown Obsessive Compulsive Scale (Y-BOCS), the primary outcome measure. RESULTS: At 12 months, seven patients showed response to DBS: three were full responders (i.e., Y-BOCS ≥ 35% improvement), and four were partial responders (Y-BOCS 25-34% improvement). Relative to baseline, there was a slight decline on visuo-spatial learning (p = 0.027), and improved performance on the Color-Word Interference inhibition/switching subtest (p = 0.041), suggesting improvement in cognitive flexibility. CONCLUSIONS: DBS in the BNST for treatment refractory OCD generates very few adverse cognitive effects and improves cognitive flexibility after 12 months of stimulation. The improvement in Y-BOCS and the absence of major cognitive side effects support the BNST as a potential target for DBS in severe OCD.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Obsesivo Compulsivo , Núcleos Septales , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Estimulación Encefálica Profunda/efectos adversos , Trastorno Obsesivo Compulsivo/terapia , Cognición , Función Ejecutiva , Resultado del Tratamiento
5.
J Intern Med ; 292(5): 764-778, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35798568

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative illness with both motor and nonmotor symptoms. Deep brain stimulation (DBS) is an established safe neurosurgical symptomatic therapy for eligible patients with advanced disease in whom medical treatment fails to provide adequate symptom control and good quality of life, or in whom dopaminergic medications induce severe side effects such as dyskinesias. DBS can be tailored to the patient's symptoms and targeted to various nodes along the basal ganglia-thalamus circuitry, which mediates the various symptoms of the illness; DBS in the thalamus is most efficient for tremors, and DBS in the pallidum most efficient for rigidity and dyskinesias, whereas DBS in the subthalamic nucleus (STN) can treat both tremors, akinesia, rigidity and dyskinesias, and allows for decrease in doses of medications even in patients with advanced stages of the disease, which makes it the preferred target for DBS. However, DBS in the STN assumes that the patient is not too old, with no cognitive decline or relevant depression, and does not exhibit severe and medically resistant axial symptoms such as balance and gait disturbances, and falls. Dysarthria is the most common side effect of DBS, regardless of the brain target. DBS has a long-lasting effect on appendicular symptoms, but with progression of disease, nondopaminergic axial features become less responsive to DBS. DBS for PD is highly specialised; to enable adequate selection and follow-up of patients, DBS requires dedicated multidisciplinary teams of movement disorder neurologists, functional neurosurgeons, specialised DBS nurses and neuropsychologists.


Asunto(s)
Estimulación Encefálica Profunda , Discinesias , Enfermedad de Parkinson , Discinesias/terapia , Humanos , Enfermedad de Parkinson/terapia , Calidad de Vida , Resultado del Tratamiento , Temblor/terapia
6.
Mol Psychiatry ; 26(1): 60-65, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33144712

RESUMEN

A consensus has yet to emerge whether deep brain stimulation (DBS) for treatment-refractory obsessive-compulsive disorder (OCD) can be considered an established therapy. In 2014, the World Society for Stereotactic and Functional Neurosurgery (WSSFN) published consensus guidelines stating that a therapy becomes established when "at least two blinded randomized controlled clinical trials from two different groups of researchers are published, both reporting an acceptable risk-benefit ratio, at least comparable with other existing therapies. The clinical trials should be on the same brain area for the same psychiatric indication." The authors have now compiled the available evidence to make a clear statement on whether DBS for OCD is established therapy. Two blinded randomized controlled trials have been published, one with level I evidence (Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score improved 37% during stimulation on), the other with level II evidence (25% improvement). A clinical cohort study (N = 70) showed 40% Y-BOCS score improvement during DBS, and a prospective international multi-center study 42% improvement (N = 30). The WSSFN states that electrical stimulation for otherwise treatment refractory OCD using a multipolar electrode implanted in the ventral anterior capsule region (including bed nucleus of stria terminalis and nucleus accumbens) remains investigational. It represents an emerging, but not yet established therapy. A multidisciplinary team involving psychiatrists and neurosurgeons is a prerequisite for such therapy, and the future of surgical treatment of psychiatric patients remains in the realm of the psychiatrist.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Obsesivo Compulsivo/terapia , Humanos , Estudios Multicéntricos como Asunto , Trastorno Obsesivo Compulsivo/psicología , Trastorno Obsesivo Compulsivo/cirugía , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
7.
Brain ; 144(3): 781-788, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33521808

RESUMEN

Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are related conditions that are associated with cholinergic system dysfunction. Dysfunction of the nucleus basalis of Meynert (NBM), a basal forebrain structure that provides the dominant source of cortical cholinergic innervation, has been implicated in the pathogenesis of both PDD and DLB. Here we leverage the temporal resolution of magnetoencephalography with the spatial resolution of MRI tractography to explore the intersection of functional and structural connectivity of the NBM in a unique cohort of PDD and DLB patients undergoing deep brain stimulation of this structure. We observe that NBM-cortical structural and functional connectivity correlate within spatially and spectrally segregated networks including: (i) a beta band network to supplementary motor area, where activity in this region was found to drive activity in the NBM; (ii) a delta/theta band network to medial temporal lobe structures encompassing the parahippocampal gyrus; and (iii) a delta/theta band network to visual areas including lingual gyrus. These findings reveal functional networks of the NBM that are likely to subserve important roles in motor control, memory and visual function, respectively. Furthermore, they motivate future studies aimed at disentangling network contribution to disease phenotype.


Asunto(s)
Núcleo Basal de Meynert/fisiopatología , Corteza Cerebral/fisiopatología , Enfermedad por Cuerpos de Lewy/fisiopatología , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/fisiopatología , Estimulación Encefálica Profunda , Imagen de Difusión Tensora , Humanos , Magnetoencefalografía , Red Nerviosa/fisiopatología
8.
Stereotact Funct Neurosurg ; 100(3): 143-155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34979516

RESUMEN

INTRODUCTION: Up to 30% of patients with post-traumatic stress disorder (PTSD), especially combat veterans, remain refractory to conventional treatment. For them, deep brain stimulation (DBS) has been suggested. Here, we review the literature on animal models of PTSD in which DBS has been used to treat PTSD-type behavior, and we review and discuss patient reports of DBS for PTSD. METHODS: A broad search was performed to find experimental animal articles and clinical reports on PubMed, Ovid MEDLINE, Cochrane Library, and PsycINFO, using combinations and variations of search words pertinent to DBS and PTSD. RESULTS: The search yielded 30 articles, 24 on DBS in rat models of PTSD, and 6 publications between 2016 and 2020 reporting on a total of 3 patients. DBS in rat models targeted 4 brain areas: medial prefrontal cortex (mPFC), ventral striatum, amygdala, and hippocampus. Clinical publications reported on 2 male combat veterans who received DBS in basolateral amygdala, and 1 female with PTSD due to domestic abuse, who received DBS of mPFC. All 3 patients benefitted to various extents from DBS, at follow-ups of 4 years, 6 months, and 7 months, respectively. CONCLUSIONS: PTSD is the only potential clinical indication for DBS that shows extensive animal research prior to human applications. Nevertheless, DBS for PTSD remains highly investigational. Despite several years of government funding of DBS research in view of treating severe PTSD in combat veterans, ethical dilemmas, recruitment difficulties, and issues related to use of DBS in such a complex and heterogenous disorder remain prevalent.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos por Estrés Postraumático , Veteranos , Amígdala del Cerebelo , Animales , Encéfalo/fisiología , Femenino , Humanos , Masculino , Ratas , Trastornos por Estrés Postraumático/terapia
9.
Stereotact Funct Neurosurg ; 100(4): 201-209, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35882210

RESUMEN

BACKGROUND: Serendipity and observations have a noble tradition in medicine, including neurology, and are responsible for many medical treatments (carbamazepine for tic douloureux, amantadine for Parkinson's disease, gabapentin for restless legs…). We aimed at examining the contribution of serendipity and observations to functional neurosurgery. Scholarly publications relevant to the history of functional neurosurgery for movement and psychiatric disorders were reviewed, starting from the pre-stereotactic era. The documents were scrutinized with respect to indications for surgery, surgical methods, and brain targets, in view of determining whether serendipitous discoveries and other observations contributed to various functional neurosurgical procedures. SUMMARY: James Parkinson's observation that tremors disappeared in the arm of a person with shaking palsy after a hemiparetic stroke encouraged neurosurgeons in the first half of the 20th century to perform ablative procedures on central motor pathways. Following a lobotomy performed by Browder that extended too far medially in a psychiatric patient with coexisting Parkinson's disease (PD), it was noted that the Parkinsonian signs improved. This encouraged Russel Meyers to carry out open surgery on the caudate nucleus and basal ganglia in PD. Cooper introduced ligation of the anterior choroidal artery as a treatment for PD following a surgical accident during a pedunculotomy. Cooper later started to perform stereotactic surgery on the ventrolateral thalamus following the pathological finding that an intended pallidal lesion had in fact targeted the thalamus. Leksell discovered the ideal location of a pallidal lesion being in the posteroventral area empirically, long before the advent of the basal ganglia model of PD. Modern Deep Brain Stimulation (DBS) that started in the thalamus for tremor was the result of an observation by Benabid that intraoperative high-frequency stimulation during a thalamotomy reduced tremor. Both the discoveries of the anterior limbic subthalamic nucleus as a DBS target for OCD and the medial forebrain bundle as a DBS target for depression occurred by chance. Hamani and Lozano observed memory flashbacks in a patient who was undergoing DBS for obesity, which led to the discovery of the fornix as a potential DBS target for Alzheimer's disease. KEY MESSAGES: In the history of functional neurosurgery, serendipity and observations have resulted in discoveries of several procedures, brain targets for lesioning or DBS as well as new clinical surgical indications. In this era of neuromodulation, this technology should be exquisite in allowing potential serendipitous discoveries, provided that clinicians remain both observant and prepared.


Asunto(s)
Neurocirugia , Observación , Estimulación Encefálica Profunda , Historia del Siglo XX , Humanos , Neurocirugia/historia , Enfermedad de Parkinson/cirugía , Psicocirugía , Accidente Cerebrovascular/cirugía , Temblor/cirugía
10.
Acta Neurochir (Wien) ; 164(1): 193-202, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34652518

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) is being investigated as a treatment for therapy-refractory obsessive compulsive disorder (OCD). Many different brain targets are being trialled. Several of these targets such as the ventral striatum (including the nucleus accumbens (NAc)), the ventral capsule, the inferior thalamic peduncle, and the bed nucleus of stria terminalis (BNST)) belong to the same network, are anatomically very close to one another, or even overlap. Data is still missing on how various stimulation parameters in a given target will affect surrounding anatomical areas and impact the clinical outcome of DBS. METHODS: In a pilot study of eleven participants with DBS of the BNST, we investigate through patient-specific simulation of electric field, which anatomical areas are affected by the electric field, and if this can be related to the clinical results. Our study combined individual patient's stimulation parameters at 12- and 24-month follow-up with image data from the preoperative MRI and postoperative CT. These data were used to calculate the distribution of electric field and create individual anatomical models of the field of stimulation. RESULTS: The individual electric stimulation fields by stimulation in the BNST were similar at both the 12- and 24-month follow-up, involving mainly anterior limb of the internal capsule (ALIC), genu of the internal capsule (IC), BNST, fornix, anteromedial globus pallidus externa (GPe), and the anterior commissure. A statistical significant correlation (p < 0.05) between clinical effect measured by the Yale-Brown Obsessive Compulsive Scale and stimulation was found at the 12-month follow-up in the ventral ALIC and anteromedial GPe. CONCLUSIONS: Many of the targets under investigation for OCD are in anatomical proximity. As seen in our study, off-target effects are overlapping. Therefore, DBS in the region of ALIC, NAc, and BNST may perhaps be considered to be stimulation of the same target.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Obsesivo Compulsivo , Núcleos Septales , Humanos , Cápsula Interna/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/terapia , Proyectos Piloto , Resultado del Tratamiento
11.
Neuromodulation ; 25(6): 935-944, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34313376

RESUMEN

OBJECTIVE: To evaluate the effects of bilateral caudal zona incerta (cZi) deep brain stimulation (DBS) for Parkinson's disease (PD) one year after surgery and to create anatomical improvement maps based on patient-specific simulation of the electric field. MATERIALS AND METHODS: We report the one-year results of bilateral cZi-DBS in 15 patients with PD. Patients were evaluated on/off medication and stimulation using the Unified Parkinson's Disease Rating Scale (UPDRS). Main outcomes were changes in motor symptoms (UPDRS-III) and quality of life according to Parkinson's Disease Questionnaire-39 (PDQ-39). Secondary outcomes included efficacy profile according to sub-items of UPDRS-III and simulation of the electric field distribution around the DBS lead using the finite element method. Simulations from all patients were transformed to one common magnetic resonance imaging template space for the creation of improvement maps and anatomical evaluation. RESULTS: Median UPDRS-III score off medication improved from 40 at baseline to 21 on stimulation at one-year follow-up (48%, p < 0.0005). PDQ-39 summary index did not change, but the subdomain activities of daily living (ADL) and stigma improved (25%, p < 0.03 and 75%, p < 0.01), whereas communication worsened (p < 0.03). For UPDRS-III sub-items, stimulation alone reduced median tremor score by 9 points, akinesia by 3, and rigidity by 2 points at one-year follow-up in comparison to baseline (90%, 25%, and 29%, respectively, p < 0.01). Visual analysis of the anatomical improvement maps based on simulated electrical fields showed no evident relation with the degree of symptom improvement and neither did statistical analysis show any significant correlation. CONCLUSIONS: Bilateral cZi-DBS alleviates motor symptoms, especially tremor, and improves ADL and stigma in PD patients one year after surgery. Improvement maps may be a useful tool for visualizing the spread of the electric field. However, there was no clear-cut relation between anatomical location of the electric field and the degree of symptom relief.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Zona Incerta , Actividades Cotidianas , Estimulación Encefálica Profunda/métodos , Estudios de Seguimiento , Humanos , Enfermedad de Parkinson/diagnóstico , Calidad de Vida , Resultado del Tratamiento , Temblor/terapia
13.
Brain ; 143(8): 2607-2623, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32653920

RESUMEN

Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with improvements in tics and comorbid obsessive-compulsive behaviour, compare the networks across surgical targets, and determine if connectivity could be used to predict clinical outcomes. Volumes of tissue activated for a large multisite cohort of patients (n = 66) implanted bilaterally in globus pallidus internus (n = 34) or centromedial thalamus (n = 32) were used to generate probabilistic tractography to form a normative structural connectome. The tractography maps were used to identify networks that were correlated with improvement in tics or comorbid obsessive-compulsive behaviour and to predict clinical outcomes across the cohort. The correlated networks were then used to generate 'reverse' tractography to parcellate the total volume of stimulation across all patients to identify local regions to target or avoid. The results showed that for globus pallidus internus, connectivity to limbic networks, associative networks, caudate, thalamus, and cerebellum was positively correlated with improvement in tics; the model predicted clinical improvement scores (P = 0.003) and was robust to cross-validation. Regions near the anteromedial pallidum exhibited higher connectivity to the positively correlated networks than posteroventral pallidum, and volume of tissue activated overlap with this map was significantly correlated with tic improvement (P < 0.017). For centromedial thalamus, connectivity to sensorimotor networks, parietal-temporal-occipital networks, putamen, and cerebellum was positively correlated with tic improvement; the model predicted clinical improvement scores (P = 0.012) and was robust to cross-validation. Regions in the anterior/lateral centromedial thalamus exhibited higher connectivity to the positively correlated networks, but volume of tissue activated overlap with this map did not predict improvement (P > 0.23). For obsessive-compulsive behaviour, both targets showed that connectivity to the prefrontal cortex, orbitofrontal cortex, and cingulate cortex was positively correlated with improvement; however, only the centromedial thalamus maps predicted clinical outcomes across the cohort (P = 0.034), but the model was not robust to cross-validation. Collectively, the results demonstrate that the structural connectivity of the site of stimulation are likely important for mediating symptom improvement, and the networks involved in tic improvement may differ across surgical targets. These networks provide important insight on potential mechanisms and could be used to guide lead placement and stimulation parameter selection, as well as refine targets for neuromodulation therapies for Tourette syndrome.


Asunto(s)
Encéfalo/fisiopatología , Estimulación Encefálica Profunda/métodos , Red Nerviosa/fisiopatología , Síndrome de Tourette/terapia , Adulto , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Estudios Retrospectivos , Síndrome de Tourette/diagnóstico por imagen , Síndrome de Tourette/fisiopatología , Resultado del Tratamiento
14.
Stereotact Funct Neurosurg ; 99(4): 287-294, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33279909

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) has been investigated for the treatment of levodopa-refractory gait dysfunction in parkinsonian disorders, with equivocal results so far. OBJECTIVES: To summarize the clinical outcomes of PPN-DBS-treated patients at our centre and elicit any patterns that may guide future research. MATERIALS AND METHODS: Pre- and post-operative objective overall motor and gait subsection scores as well as patient-reported outcomes were recorded for 6 PPN-DBS-treated patients, 3 with Parkinson's disease (PD), and 3 with progressive supranuclear palsy (PSP). Electrodes were implanted unilaterally in the first 3 patients and bilaterally in the latter 3, using an MRI-guided MRI-verified technique. Stimulation was initiated at 20-30 Hz and optimized in an iterative manner. RESULTS: Unilaterally treated patients did not demonstrate significant improvements in gait questionnaires, UPDRS-III or PSPRS scores or their respective gait subsections. This contrasted with at least an initial response in bilaterally treated patients. Diurnal cycling of stimulation in a PD patient with habituation to the initial benefit reproduced substantial improvements in freezing of gait (FOG) 3 years post-operatively. Among the PSP patients, 1 with a parkinsonian subtype had a sustained improvement in FOG while another with Richardson syndrome (PSP-RS) did not benefit. CONCLUSIONS: PPN-DBS remains an investigational treatment for levodopa-refractory FOG. This series corroborates some previously reported findings: bilateral stimulation may be more effective than unilateral stimulation; the response in PSP patients may depend on the disease subtype; and diurnal cycling of stimulation to overcome habituation merits further investigation.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Núcleo Tegmental Pedunculopontino , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Humanos , Levodopa , Enfermedad de Parkinson/terapia
15.
Neuroimage ; 221: 117184, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711059

RESUMEN

Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are two related diseases which can be difficult to distinguish. There is no objective biomarker which can reliably differentiate between them. The synergistic combination of electrophysiological and neuroimaging approaches is a powerful method for interrogation of functional brain networks in vivo. We recorded bilateral local field potentials (LFPs) from the nucleus basalis of Meynert (NBM) and the internal globus pallidus (GPi) with simultaneous cortical magnetoencephalography (MEG) in six PDD and five DLB patients undergoing surgery for deep brain stimulation (DBS) to look for differences in underlying resting-state network pathophysiology. In both patient groups we observed spectral peaks in the theta (2-8 Hz) band in both the NBM and the GPi. Furthermore, both the NBM and the GPi exhibited similar spatial and spectral patterns of coupling with the cortex in the two disease states. Specifically, we report two distinct coherent networks between the NBM/GPi and cortical regions: (1) a theta band (2-8 Hz) network linking the NBM/GPi to temporal cortical regions, and (2) a beta band (13-22 Hz) network coupling the NBM/GPi to sensorimotor areas. We also found differences between the two disease groups: oscillatory power in the low beta (13-22Hz) band was significantly higher in the globus pallidus in PDD patients compared to DLB, and coherence in the high beta (22-35Hz) band between the globus pallidus and lateral sensorimotor cortex was significantly higher in DLB patients compared to PDD. Overall, our findings reveal coherent networks of the NBM/GPi region that are common to both DLB and PDD. Although the neurophysiological differences between the two conditions in this study are confounded by systematic differences in DBS lead trajectories and motor symptom severity, they lend support to the hypothesis that DLB and PDD, though closely related, are distinguishable from a neurophysiological perspective.


Asunto(s)
Núcleo Basal de Meynert/fisiopatología , Ondas Encefálicas/fisiología , Corteza Cerebral/fisiopatología , Conectoma , Demencia/fisiopatología , Globo Pálido/fisiopatología , Enfermedad por Cuerpos de Lewy/fisiopatología , Magnetoencefalografía , Red Nerviosa/fisiopatología , Enfermedad de Parkinson/fisiopatología , Anciano , Núcleo Basal de Meynert/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Demencia/diagnóstico por imagen , Femenino , Globo Pálido/diagnóstico por imagen , Humanos , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen
16.
Mov Disord ; 35(1): 101-108, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31571270

RESUMEN

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective therapy for selected Parkinson's disease patients with motor fluctuations, but can adversely affect speech and axial symptoms. The use of short pulse width (PW) has been shown to expand the therapeutic window acutely, but its utility in reducing side effects in chronic STN-DBS patients has not been evaluated. OBJECTIVE: To compare the effect of short PW settings using 30-µs with conventional 60-µs settings on stimulation-induced dysarthria in Parkinson's disease patients with previously implanted STN-DBS systems. METHODS: In this single-center, double-blind, randomized crossover trial, we assigned 16 Parkinson's disease patients who had been on STN-DBS for a mean of 6.5 years and exhibited moderate dysarthria to 30-µs or 60-µs settings for 4 weeks followed by the alternative PW setting for a further 4 weeks. The primary outcome was difference in dysarthric speech measured by the Sentence Intelligibility Test between study baseline and the 2 PW conditions. Secondary outcomes included motor, nonmotor, and quality of life measures. RESULTS: There was no difference in the Sentence Intelligibility Test scores between baseline and the 2 treatment conditions (P = 0.25). There were also no differences noted in motor, nonmotor, or quality of life scores. The 30-µs settings were well tolerated, and adverse event rates were similar to those at conventional PW settings. Post hoc analysis indicated that patients with dysarthria and a shorter duration of DBS may be improved by short PW stimulation. CONCLUSIONS: Short PW settings using 30 µs did not alter dysarthric speech in chronic STN-DBS patients. A future study should evaluate whether patients with shorter duration of DBS may be helped by short PW settings. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Resultado del Tratamiento , Anciano , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Calidad de Vida
17.
Brain ; 142(8): 2417-2431, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31219504

RESUMEN

Subthalamic nucleus deep brain stimulation is an effective treatment for advanced Parkinson's disease; however, its therapeutic mechanism is unclear. Previous modelling of functional MRI data has suggested that deep brain stimulation has modulatory effects on a number of basal ganglia pathways. This work uses an enhanced data collection protocol to collect rare functional MRI data in patients with subthalamic nucleus deep brain stimulation. Eleven patients with Parkinson's disease and subthalamic nucleus deep brain stimulation underwent functional MRI at rest and during a movement task; once with active deep brain stimulation, and once with deep brain stimulation switched off. Dynamic causal modelling and Bayesian model selection were first used to compare a series of plausible biophysical models of the cortico-basal ganglia circuit that could explain the functional MRI activity at rest in an attempt to reproduce and extend the findings from our previous work. General linear modelling of the movement task functional MRI data revealed deep brain stimulation-associated signal increases in the primary motor and cerebellar cortices. Given the significance of the cerebellum in voluntary movement, we then built a more complete model of the motor system by including cerebellar-basal ganglia interactions, and compared the modulatory effects deep brain stimulation had on different circuit components during the movement task and again using the resting state data. Consistent with previous results from our independent cohort, model comparison found that the rest data were best explained by deep brain stimulation-induced increased (effective) connectivity of the cortico-striatal, thalamo-cortical and direct pathway and reduced coupling of subthalamic nucleus afferent and efferent connections. No changes in cerebellar connectivity were identified at rest. In contrast, during the movement task, there was functional recruitment of subcortical-cerebellar pathways, which were additionally modulated by deep brain stimulation, as well as modulation of local (intrinsic) cortical and cerebellar circuits. This work provides in vivo evidence for the modulatory effects of subthalamic nucleus deep brain stimulation on effective connectivity within the cortico-basal ganglia loops at rest, as well as further modulations in the cortico-cerebellar motor system during voluntary movement. We propose that deep brain stimulation has both behaviour-independent effects on basal ganglia connectivity, as well as behaviour-dependent modulatory effects.


Asunto(s)
Encéfalo/fisiopatología , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Desempeño Psicomotor/fisiología , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiopatología , Núcleo Subtalámico/fisiopatología
18.
Stereotact Funct Neurosurg ; 98(4): 241-247, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32599586

RESUMEN

The paper invites to reappraise the role of psychosurgery for and within the development of functional stereotactic neurosurgery. It highlights the significant and long-lived role of stereotactic neurosurgery in the treatment of severe and chronic mental disorders. Stereotactic neurosurgery developed out of psychosurgery. It was leucotomy for psychiatric disorders and chronic pain that paved the way for stereotactic dorsomedial thalamotomy in these indications and subsequently for stereotactic surgery in epilepsy and movement disorders. Through the 1960s stereotactic psychosurgery continued to progress in silence. Due to the increased applications of stereotactic surgery in psychiatric indications, psychosurgery's renaissance was proclaimed in the early 1970s. At the same time, however, a public fearing mind control started to discredit all functional neurosurgery for mental disorders, including stereotactic procedures. In writing its own history, stereotactic neurosurgery's identity as a neuropsychiatric discipline became subsequently increasingly redefined as principally a sort of "surgical neurology," cut off from its psychiatric origin.


Asunto(s)
Trastornos Mentales/historia , Neurocirugia/historia , Psicocirugía/historia , Técnicas Estereotáxicas/historia , Dolor Crónico/historia , Dolor Crónico/cirugía , Epilepsia/historia , Epilepsia/cirugía , Historia del Siglo XX , Humanos , Trastornos Mentales/cirugía , Trastornos del Movimiento/historia , Trastornos del Movimiento/cirugía
19.
J Neurol Neurosurg Psychiatry ; 90(10): 1078-1090, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31129620

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) can be an effective therapy for tics and comorbidities in select cases of severe, treatment-refractory Tourette syndrome (TS). Clinical responses remain variable across patients, which may be attributed to differences in the location of the neuroanatomical regions being stimulated. We evaluated active contact locations and regions of stimulation across a large cohort of patients with TS in an effort to guide future targeting. METHODS: We collected retrospective clinical data and imaging from 13 international sites on 123 patients. We assessed the effects of DBS over time in 110 patients who were implanted in the centromedial (CM) thalamus (n=51), globus pallidus internus (GPi) (n=47), nucleus accumbens/anterior limb of the internal capsule (n=4) or a combination of targets (n=8). Contact locations (n=70 patients) and volumes of tissue activated (n=63 patients) were coregistered to create probabilistic stimulation atlases. RESULTS: Tics and obsessive-compulsive behaviour (OCB) significantly improved over time (p<0.01), and there were no significant differences across brain targets (p>0.05). The median time was 13 months to reach a 40% improvement in tics, and there were no significant differences across targets (p=0.84), presence of OCB (p=0.09) or age at implantation (p=0.08). Active contacts were generally clustered near the target nuclei, with some variability that may reflect differences in targeting protocols, lead models and contact configurations. There were regions within and surrounding GPi and CM thalamus that improved tics for some patients but were ineffective for others. Regions within, superior or medial to GPi were associated with a greater improvement in OCB than regions inferior to GPi. CONCLUSION: The results collectively indicate that DBS may improve tics and OCB, the effects may develop over several months, and stimulation locations relative to structural anatomy alone may not predict response. This study was the first to visualise and evaluate the regions of stimulation across a large cohort of patients with TS to generate new hypotheses about potential targets for improving tics and comorbidities.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Globo Pálido/diagnóstico por imagen , Cápsula Interna/diagnóstico por imagen , Núcleo Accumbens/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Síndrome de Tourette/terapia , Adolescente , Adulto , Atlas como Asunto , Estudios de Cohortes , Conducta Compulsiva/psicología , Femenino , Humanos , Núcleos Talámicos Intralaminares/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Conducta Obsesiva/psicología , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X , Síndrome de Tourette/diagnóstico por imagen , Síndrome de Tourette/psicología , Resultado del Tratamiento , Adulto Joven
20.
Brain ; 141(10): 3023-3034, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30165511

RESUMEN

Pallidal deep brain stimulation is an established treatment in patients with dystonia. However, evidence from case series or uncontrolled studies suggests that it may lead in some patients to specific parkinsonian symptoms such as freezing of gait, micrographia, and bradykinesia. We investigated parkinsonian signs using the Movement Disorder Society Unified Parkinson's Disease Rating Scale motor score by means of observer-blinded video ratings in a group of 29 patients treated with pallidal stimulation and a non-surgical control group of 22 patients, both with predominant cervical dystonia. Additional assessments included MRI-based models of volume of neural tissue activated to investigate areas of stimulation related to dystonic symptom control and those likely to induce parkinsonian signs as well as an EMG analysis to investigate functional vicinity of stimulation fields to the pyramidal tract. Compared with controls, stimulated patients had significantly higher motor scores (median, 25th-75th percentile: 14.0, 8.0-19.5 versus 3.0, 2.0-8.0; P < 0.0001), as well as bradykinesia (8.0, 6.0-14.0 versus 2.0, 0.0-3.0; P < 0.0001) and axial motor subscores (2.0, 1.0-4.0 versus 0.0, 0.0-1.0; P = 0.0002), while rigidity and tremor subscores were not different between groups. Parkinsonian signs were partially reversible upon switching stimulation off for a median of 90 min in a subset of 19 patients tolerating this condition. Furthermore, the stimulation group reported more features of freezing of gait on a questionnaire basis. Quality of life was better in stimulated patients compared with control patients, but parkinsonian signs were negatively associated with quality of life. In the descriptive imaging analysis maximum efficacy for dystonia improvement projected to the posteroventrolateral internal pallidum with overlapping clusters driving severity of bradykinesia and axial motor symptoms. The severities of parkinsonian signs were not correlated with functional vicinity to the pyramidal tract as assessed by EMG. In conclusion, parkinsonian signs, particularly bradykinesia and axial motor signs, due to pallidal stimulation in dystonic patients are frequent and negatively impact on motor functioning and quality of life. Therefore, patients with pallidal stimulation should be monitored closely for such signs both in clinical routine and future clinical trials. Spread of current outside the internal pallidum is an unlikely explanation for this phenomenon, which seems to be caused by stimulation of neural elements within the stimulation target volume.


Asunto(s)
Estimulación Encefálica Profunda/efectos adversos , Trastornos Parkinsonianos/etiología , Tortícolis/terapia , Anciano , Femenino , Globo Pálido , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA