Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Neurobiol Dis ; 198: 106537, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772452

RESUMEN

Hereditary spastic paraplegia (HSP) comprises a large group of neurogenetic disorders characterized by progressive lower extremity spasticity. Neurological evaluation and genetic testing were completed in a Malian family with early-onset HSP. Three children with unaffected consanguineous parents presented with symptoms consistent with childhood-onset complicated HSP. Neurological evaluation found lower limb weakness, spasticity, dysarthria, seizures, and intellectual disability. Brain MRI showed corpus callosum thinning with cortical and spinal cord atrophy, and an EEG detected slow background in the index patient. Whole exome sequencing identified a homozygous missense variant in the adaptor protein (AP) complex 2 alpha-2 subunit (AP2A2) gene. Western blot analysis showed reduced levels of AP2A2 in patient-iPSC derived neuronal cells. Endocytosis of transferrin receptor (TfR) was decreased in patient-derived neurons. In addition, we observed increased axon initial segment length in patient-derived neurons. Xenopus tropicalis tadpoles with ap2a2 knockout showed cerebral edema and progressive seizures. Immunoprecipitation of the mutant human AP-2-appendage alpha-C construct showed defective binding to accessory proteins. We report AP2A2 as a novel genetic entity associated with HSP and provide functional data in patient-derived neuron cells and a frog model. These findings expand our understanding of the mechanism of HSP and improve the genetic diagnosis of this condition.


Asunto(s)
Complejo 2 de Proteína Adaptadora , Endocitosis , Paraplejía Espástica Hereditaria , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Complejo 2 de Proteína Adaptadora/genética , Endocitosis/genética , Endocitosis/fisiología , Mutación/genética , Mutación Missense , Neuronas/metabolismo , Neuronas/patología , Linaje , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/patología , Xenopus
2.
Hum Mol Genet ; 25(10): 1979-1989, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26962150

RESUMEN

Spinal and bulbar muscular atrophy (SBMA, also known as Kennedy's disease) is one of nine neurodegenerative disorders that are caused by expansion of polyglutamine-encoding CAG repeats. Intracellular accumulation of abnormal proteins in these diseases, a pathological hallmark, is associated with defects in protein homeostasis. Enhancement of the cellular proteostasis capacity with small molecules has therefore emerged as a promising approach to treatment. Here, we characterize a novel curcumin analog, ASC-JM17, as an activator of central pathways controlling protein folding, degradation and oxidative stress resistance. ASC-JM17 acts on Nrf1, Nrf2 and Hsf1 to increase the expression of proteasome subunits, antioxidant enzymes and molecular chaperones. We show that ASC-JM17 ameliorates toxicity of the mutant androgen receptor (AR) responsible for SBMA in cell, fly and mouse models. Knockdown of the Drosophila Nrf1 and Nrf2 ortholog cap 'n' collar isoform-C, but not Hsf1, blocks the protective effect of ASC-JM17 on mutant AR-induced eye degeneration in flies. Our observations indicate that activation of the Nrf1/Nrf2 pathway is a viable option for pharmacological intervention in SBMA and potentially other polyglutamine diseases.


Asunto(s)
Atrofia Bulboespinal Ligada al X/genética , Curcumina/análogos & derivados , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Trastornos Musculares Atróficos/genética , Factor 1 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/genética , Receptores Androgénicos/genética , Factores de Transcripción/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Atrofia Bulboespinal Ligada al X/tratamiento farmacológico , Atrofia Bulboespinal Ligada al X/patología , Curcumina/administración & dosificación , Curcumina/química , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Técnicas de Silenciamiento del Gen , Factores de Transcripción del Choque Térmico , Humanos , Ratones , Trastornos Musculares Atróficos/tratamiento farmacológico , Trastornos Musculares Atróficos/patología , Estrés Oxidativo/efectos de los fármacos , Péptidos/genética , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Agregación Patológica de Proteínas/genética , Pliegue de Proteína/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/administración & dosificación
3.
Mol Ther ; 24(5): 937-45, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26755334

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a currently untreatable adult-onset neuromuscular disease caused by expansion of a polyglutamine repeat in the androgen receptor (AR). In SBMA, as in other polyglutamine diseases, a toxic gain of function in the mutant protein is an important factor in the disease mechanism; therefore, reducing the mutant protein holds promise as an effective treatment strategy. In this work, we evaluated a microRNA (miRNA) to reduce AR expression. From a list of predicted miRNAs that target human AR, we selected microRNA-298 (miR-298) for its ability to downregulate AR mRNA and protein levels when transfected in cells overexpressing wild-type and mutant AR and in SBMA patient-derived fibroblasts. We showed that miR-298 directly binds to the 3'-untranslated region of the human AR transcript, and counteracts AR toxicity in vitro. Intravenous delivery of miR-298 with adeno-associated virus serotype 9 vector resulted in efficient transduction of muscle and spinal cord and amelioration of the disease phenotype in SBMA mice. Our findings support the development of miRNAs as a therapeutic strategy for SBMA and other neurodegenerative disorders caused by toxic proteins.


Asunto(s)
Regulación hacia Abajo , Terapia Genética/métodos , MicroARNs/genética , Atrofia Muscular Espinal/terapia , Receptores Androgénicos/genética , Regiones no Traducidas 3' , Administración Intravenosa , Animales , Línea Celular , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Humanos , Células MCF-7 , Ratones , Atrofia Muscular Espinal/genética
4.
Ann Neurol ; 75(4): 525-32, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24515897

RESUMEN

OBJECTIVE: Spinal muscular atrophy (SMA) is one of the most common severe hereditary diseases of infancy and early childhood in North America, Europe, and Asia. SMA is usually caused by deletions of the survival motor neuron 1 (SMN1) gene. A closely related gene, SMN2, modifies the disease severity. SMA carriers have only 1 copy of SMN1 and are relatively common (1 in 30-50) in populations of European and Asian descent. SMN copy numbers and SMA carrier frequencies have not been reliably estimated in Malians and other sub-Saharan Africans. METHODS: We used a quantitative polymerase chain reaction assay to determine SMN1 and SMN2 copy numbers in 628 Malians, 120 Nigerians, and 120 Kenyans. We also explored possible mechanisms for SMN1 and SMN2 copy number differences in Malians, and investigated their effects on SMN mRNA and protein levels. RESULTS: The SMA carrier frequency in Malians is 1 in 209, lower than in Eurasians. Malians and other sub-Saharan Africans are more likely to have ≥3 copies of SMN1 than Eurasians, and more likely to lack SMN2 than Europeans. There was no evidence of gene conversion, gene locus duplication, or natural selection from malaria resistance to account for the higher SMN1 copy numbers in Malians. High SMN1 copy numbers were not associated with increased SMN mRNA or protein levels in human cell lines. INTERPRETATION: SMA carrier frequencies are much lower in sub-Saharan Africans than in Eurasians. This finding is important to consider in SMA genetic counseling in individuals with black African ancestry.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Atrofia Muscular Espinal/epidemiología , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , África del Sur del Sahara/epidemiología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , ARN Mensajero/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética
5.
Neurobiol Dis ; 70: 12-20, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24925468

RESUMEN

Spinal and bulbar muscular atrophy (SBMA, Kennedy's disease) is a motor neuron disease caused by polyglutamine repeat expansion in the androgen receptor. Although degeneration occurs in the spinal cord and muscle, the exact mechanism is not clear. Induced pluripotent stem cells from spinal and bulbar muscular atrophy patients provide a useful model for understanding the disease mechanism and designing effective therapy. Stem cells were generated from six patients and compared to control lines from three healthy individuals. Motor neurons from four patients were differentiated from stem cells and characterized to understand disease-relevant phenotypes. Stem cells created from patient fibroblasts express less androgen receptor than control cells, but show androgen-dependent stabilization and nuclear translocation. The expanded repeat in several stem cell clones was unstable, with either expansion or contraction. Patient stem cell clones produced a similar number of motor neurons compared to controls, with or without androgen treatment. The stem cell-derived motor neurons had immunoreactivity for HB9, Isl1, ChAT, and SMI-32, and those with the largest repeat expansions were found to have increased acetylated α-tubulin and reduced HDAC6. Reduced HDAC6 was also found in motor neuron cultures from two other patients with shorter repeats. Evaluation of stably transfected mouse cells and SBMA spinal cord showed similar changes in acetylated α-tubulin and HDAC6. Perinuclear lysosomal enrichment, an HDAC6 dependent process, was disrupted in motor neurons from two patients with the longest repeats. SBMA stem cells present new insights into the disease, and the observations of reduced androgen receptor levels, repeat instability, and reduced HDAC6 provide avenues for further investigation of the disease mechanism and development of effective therapy.


Asunto(s)
Atrofia Bulboespinal Ligada al X/fisiopatología , Células Madre Pluripotentes Inducidas/fisiología , Neuronas Motoras/fisiología , Acetilación , Adulto , Anciano , Atrofia Bulboespinal Ligada al X/genética , Células Cultivadas , Expansión de las Repeticiones de ADN , Femenino , Fibroblastos/fisiología , Histona Desacetilasa 6 , Histona Desacetilasas/deficiencia , Humanos , Masculino , Persona de Mediana Edad , Neurogénesis/fisiología , Receptores Androgénicos/metabolismo , Tubulina (Proteína)/metabolismo , Adulto Joven
6.
Mol Med ; 18: 1261-8, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22952056

RESUMEN

Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by polyglutamine expansion in the androgen receptor. Patients develop slowly progressive proximal muscle weakness, muscle atrophy and fasciculations. Affected individuals often show gynecomastia, testicular atrophy and reduced fertility as a result of mild androgen insensitivity. No effective disease-modifying therapy is currently available for this disease. Our recent studies have demonstrated that insulinlike growth factor (IGF)-1 reduces the mutant androgen receptor toxicity through activation of Akt in vitro, and spinal and bulbar muscular atrophy transgenic mice that also overexpress a noncirculating muscle isoform of IGF-1 have a less severe phenotype. Here we sought to establish the efficacy of daily intraperitoneal injections of mecasermin rinfabate, recombinant human IGF-1 and IGF-1 binding protein 3, in a transgenic mouse model expressing the mutant androgen receptor with an expanded 97 glutamine tract. The study was done in a controlled, randomized, blinded fashion, and, to reflect the clinical settings, the injections were started after the onset of disease manifestations. The treatment resulted in increased Akt phosphorylation and reduced mutant androgen receptor aggregation in muscle. In comparison to vehicle-treated controls, IGF-1-treated transgenic mice showed improved motor performance, attenuated weight loss and increased survival. Our results suggest that peripheral tissue can be targeted to improve the spinal and bulbar muscular atrophy phenotype and indicate that IGF-1 warrants further investigation in clinical trials as a potential treatment for this disease.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/uso terapéutico , Trastornos Musculares Atróficos/tratamiento farmacológico , Trastornos Musculares Atróficos/patología , Animales , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Humanos , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Músculos/efectos de los fármacos , Músculos/metabolismo , Músculos/patología , Músculos/fisiopatología , Trastornos Musculares Atróficos/enzimología , Trastornos Musculares Atróficos/fisiopatología , Proteínas Mutantes/metabolismo , Fosforilación/efectos de los fármacos , Estructura Cuaternaria de Proteína , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Androgénicos/metabolismo , Pérdida de Peso/efectos de los fármacos
7.
Hum Mol Genet ; 18(1): 27-42, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18824496

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a motor neuron disease caused by polyglutamine expansion mutation in the androgen receptor (AR). We investigated whether the mutant protein alters mitochondrial function. We found that constitutive and doxycycline-induced expression of the mutant AR in MN-1 and PC12 cells, respectively, are associated with depolarization of the mitochondrial membrane. This was mitigated by cyclosporine A, which inhibits opening of the mitochondrial permeability transition pore. We also found that the expression of the mutant protein in the presence of ligand results in an elevated level of reactive oxygen species, which is blocked by the treatment with the antioxidants co-enzyme Q10 and idebenone. The mutant protein in MN-1 cells also resulted in increased Bax, caspase 9 and caspase 3. We assessed the effects of mutant AR on the transcription of mitochondrial proteins and found altered expression of the peroxisome proliferator-activated receptor gamma coactivator 1 and the mitochondrial specific antioxidant superoxide dismutase-2 in affected tissues of SBMA knock-in mice. In addition, we found that the AR associates with mitochondria in cultured cells. This study thus provides evidence for mitochondrial dysfunction in SBMA cell and animal models, either through indirect effects on the transcription of nuclear-encoded mitochondrial genes or through direct effects of the mutant protein on mitochondria or both. These findings indicate possible benefit from mitochondrial therapy for SBMA.


Asunto(s)
Atrofia Bulboespinal Ligada al X/metabolismo , Mitocondrias/metabolismo , Receptores Androgénicos/metabolismo , Animales , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/fisiopatología , Caspasas/genética , Caspasas/metabolismo , Muerte Celular , Línea Celular Tumoral , Femenino , Expresión Génica , Humanos , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/enzimología , Mitocondrias/genética , Ratas , Especies Reactivas de Oxígeno/metabolismo , Receptores Androgénicos/genética
8.
J Cell Biol ; 172(5): 733-45, 2006 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-16505168

RESUMEN

The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. Dynactin is ubiquitously expressed in eukaryotes, but a G59S mutation in the p150Glued subunit of dynactin results in the specific degeneration of motor neurons. This mutation in the conserved cytoskeleton-associated protein, glycine-rich (CAP-Gly) domain lowers the affinity of p150Glued for microtubules and EB1. Cell lines from patients are morphologically normal but show delayed recovery after nocodazole treatment, consistent with a subtle disruption of dynein/dynactin function. The G59S mutation disrupts the folding of the CAP-Gly domain, resulting in aggregation of the p150Glued protein both in vitro and in vivo, which is accompanied by an increase in cell death in a motor neuron cell line. Overexpression of the chaperone Hsp70 inhibits aggregate formation and prevents cell death. These data support a model in which a point mutation in p150Glued causes both loss of dynein/dynactin function and gain of toxic function, which together lead to motor neuron cell death.


Asunto(s)
Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Neuronas Motoras/metabolismo , Animales , Apoptosis/genética , Células COS , Células Cultivadas , Chlorocebus aethiops , Complejo Dinactina , Dineínas/metabolismo , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/genética , Humanos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación Puntual
9.
Mol Ther Nucleic Acids ; 23: 731-742, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33575118

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations in the survival motor neuron 1 (SMN1) gene. All patients have at least one copy of a paralog, SMN2, but a C-to-T transition in this gene results in exon 7 skipping in a majority of transcripts. Approved treatment for SMA involves promoting exon 7 inclusion in the SMN2 transcript or increasing the amount of full-length SMN by gene replacement with a viral vector. Increasing the pool of SMN2 transcripts and increasing their translational efficiency can be used to enhance splice correction. We sought to determine whether the 5' untranslated region (5' UTR) of SMN2 contains a repressive feature that can be targeted to increase SMN levels. We found that antisense oligonucleotides (ASOs) complementary to the 5' end of SMN2 increase SMN mRNA and protein levels and that this effect is due to inhibition of SMN2 mRNA decay. Moreover, use of the 5' UTR ASO in combination with a splice-switching oligonucleotide (SSO) increases SMN levels above those attained with the SSO alone. Our results add to the current understanding of SMN regulation and point toward a new therapeutic target for SMA.

10.
J Neurosci Res ; 88(10): 2207-16, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20336775

RESUMEN

Expanded polyglutamine tracts cause neurodegeneration through a toxic gain-of-function mechanism. Generation of inclusions is a common feature of polyglutamine diseases and other protein misfolding disorders. Inclusion formation is likely to be a defensive response of the cell to the presence of unfolded protein. Recently, the compound B2 has been shown to increase inclusion formation and decrease toxicity of polyglutamine-expanded huntingtin in cultured cells. We explored the effect of B2 on spinal and bulbar muscular atrophy (SBMA). SBMA is caused by expansion of polyglutamine in the androgen receptor (AR) and is characterized by the loss of motor neurons in the brainstem and spinal cord. We found that B2 increases the deposition of mutant AR into nuclear inclusions, without altering the ligand-induced aggregation, expression, or subcellular distribution of the mutant protein. The effect of B2 on inclusions was associated with a decrease in AR transactivation function. We show that B2 reduces mutant AR toxicity in cell and fly models of SBMA, further supporting the idea that accumulation of polyglutamine-expanded protein into inclusions is protective. Our findings suggest B2 as a novel approach to therapy for SBMA.


Asunto(s)
Atrofia Bulboespinal Ligada al X/tratamiento farmacológico , Atrofia Bulboespinal Ligada al X/metabolismo , Fármacos Neuroprotectores/farmacología , Nitroquinolinas/farmacología , Péptidos/metabolismo , Piperazinas/farmacología , Receptores Androgénicos/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Modelos Animales de Enfermedad , Drosophila melanogaster , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Cuerpos de Inclusión Intranucleares/efectos de los fármacos , Cuerpos de Inclusión Intranucleares/metabolismo , Ligandos , Mutación , Multimerización de Proteína , Ratas , Receptores Androgénicos/genética
11.
J Vis Exp ; (138)2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-30148479

RESUMEN

RNA interference via the endogenous miRNA pathway regulates gene expression by controlling protein synthesis through post-transcriptional gene silencing. In recent years, miRNA-mediated gene regulation has shown potential for treatment of neurological disorders caused by a toxic gain of function mechanism. However, efficient delivery to target tissues has limited its application. Here we used a transgenic mouse model for spinal and bulbar muscular atrophy (SBMA), a neuromuscular disease caused by polyglutamine expansion in the androgen receptor (AR), to test gene silencing by a newly identified AR-targeting miRNA, miR-298. We overexpressed miR-298 using a recombinant adeno-associated virus (rAAV) serotype 9 vector to facilitate transduction of non-dividing cells. A single tail-vein injection in SBMA mice induced sustained and widespread overexpression of miR-298 in skeletal muscle and motor neurons and resulted in amelioration of the neuromuscular phenotype in the mice.


Asunto(s)
Regulación de la Expresión Génica/genética , Terapia Genética/métodos , MicroARNs/genética , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/terapia , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Enfermedades Neuromusculares/patología , Roedores , Serogrupo
12.
J Neuromuscul Dis ; 3(1): 121-125, 2016 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-27854206

RESUMEN

Spinal and bulbar muscular atrophy is caused by polyglutamine expansion in the androgen receptor. As an X-linked disease dependent on androgens, symptoms and findings are only fully manifest in males. Here we describe a 40-year-old male-to-female transgender SBMA patient who developed full disease manifestations despite undetectable levels of androgens. We used cell culture and animal models to show that spironolactone, the anti-androgen she had taken for 15 years, promotes nuclear localization and toxicity of the mutant protein, which may explain the disease manifestations in this patient.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Atrofia Bulboespinal Ligada al X/prevención & control , Procedimientos de Reasignación de Sexo/métodos , Espironolactona/farmacología , Transexualidad/terapia , Antagonistas de Andrógenos/efectos adversos , Animales , Modelos Animales de Enfermedad , Drosophila , Femenino , Humanos , Masculino , Ratas , Espironolactona/efectos adversos
13.
Retrovirology ; 2: 80, 2005 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-16371160

RESUMEN

BACKGROUND: Efficient targeted gene transfer and cell type specific transgene expression are important for the safe and effective expression of transgenes in vivo. Enveloped viral vectors allow insertion of exogenous membrane proteins into their envelopes, which could potentially aid in the targeted transduction of specific cell types. Our goal was to specifically target cells that express the T cell tropic HIV-1 envelope protein (Env) using the highly specific interaction of Env with its cellular receptor (CD4) inserted into the envelope of an HIV-1-based viral vector. RESULTS: To generate HIV-1-based vectors carrying the CD4 molecule in their envelope, the CD4 ectodomain was fused to diverse membrane anchors and inserted together with the HIV-1 coreceptor CXCR4 into the envelopes of HIV-1 vector particles. Independent of the type of CD4 anchor, all chimeric CD4 proteins inserted into HIV-1 vector envelopes and the resultant HIV(CD4/CXCR4) particles were able to selectively confer neomycin resistance to cells expressing the fusogenic T cell tropic HIV-1 Env protein. Unexpectedly, in the absence of Env on the target cells, all vector particles carrying the CD4 ectodomain anchored in their envelope adhered to various cell types without infecting these cells. This cell adhesion was very avid. It was independent of the presence of Env on the target cell, the type of CD4 anchor or the presence of CXCR4 on the particle. In mixed cell populations with defined ratios of Env+/Env- cells, the targeted transduction of Env+ cells by HIV(CD4/CXCR4) particles was diminished in proportion to the number of Env- cells. CONCLUSION: Vector diversion caused by a strong, non-selective cell binding of CD4+-vector particles effectively prevents the targeted transduction of HIV-1 Env expressing cells in mixed cell populations. This Env-independent cell adhesion severely limits the effective use of targeted HIV(CD4/CXCR4) vectors designed to interfere with HIV-1 replication in vivo. Importantly, the existence of this newly described and remarkably strong CD4-dependent cell adhesion suggests that the multiple viral efforts to reduce CD4 cell surface expression may, in part, be to prevent cell adhesion to non-target cells and thereby to increase the infectivity of viral progeny. Preventing CD4 down-modulation by HIV-1 might be an effective component of a multi-faceted antiviral strategy.


Asunto(s)
Antígenos CD4/fisiología , Productos del Gen env/fisiología , VIH-1/patogenicidad , Receptores CXCR4/fisiología , Animales , Células COS , Adhesión Celular , Chlorocebus aethiops , Regulación hacia Abajo , Productos del Gen env/análisis , Vectores Genéticos , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Transducción Genética , Virión/fisiología , Ensamble de Virus
14.
JAMA Neurol ; 72(5): 561-70, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25751282

RESUMEN

IMPORTANCE: The family of genes implicated in hereditary spastic paraplegias (HSPs) is quickly expanding, mostly owing to the widespread availability of next-generation DNA sequencing methods. Nevertheless, a genetic diagnosis remains unavailable for many patients. OBJECTIVE: To identify the genetic cause for a novel form of pure autosomal dominant HSP. DESIGN, SETTING, AND PARTICIPANTS: We examined and followed up with a family presenting to a tertiary referral center for evaluation of HSP for a decade until August 2014. Whole-exome sequencing was performed in 4 patients from the same family and was integrated with linkage analysis. Sanger sequencing was used to confirm the presence of the candidate variant in the remaining affected and unaffected members of the family and screen the additional patients with HSP. Five affected and 6 unaffected participants from a 3-generation family with pure adult-onset autosomal dominant HSP of unknown genetic origin were included. Additionally, 163 unrelated participants with pure HSP of unknown genetic cause were screened. MAIN OUTCOME AND MEASURE: Mutation in the neuronal isoform of carnitine palmitoyl-transferase (CPT1C) gene. RESULTS: We identified the nucleotide substitution c.109C>T in exon 3 of CPT1C, which determined the base substitution of an evolutionarily conserved Cys residue for an Arg in the gene product. This variant strictly cosegregated with the disease phenotype and was absent in online single-nucleotide polymorphism databases and in 712 additional exomes of control participants. We showed that CPT1C, which localizes to the endoplasmic reticulum, is expressed in motor neurons and interacts with atlastin-1, an endoplasmic reticulum protein encoded by the ATL1 gene known to be mutated in pure HSPs. The mutation, as indicated by nuclear magnetic resonance spectroscopy studies, alters the protein conformation and reduces the mean (SD) number (213.0 [46.99] vs 81.9 [14.2]; P < .01) and size (0.29 [0.01] vs 0.26 [0.01]; P < .05) of lipid droplets on overexpression in cells. We also observed a reduction of mean (SD) lipid droplets in primary cortical neurons isolated from Cpt1c-/- mice as compared with wild-type mice (1.0 [0.12] vs 0.44 [0.05]; P < .001), suggesting a dominant negative mechanism for the mutation. CONCLUSIONS AND RELEVANCE: This study expands the genetics of autosomal dominant HSP and is the first, to our knowledge, to link mutation in CPT1C with a human disease. The association of the CPT1C mutation with changes in lipid droplet biogenesis supports a role for altered lipid-mediated signal transduction in HSP pathogenesis.


Asunto(s)
Carnitina O-Palmitoiltransferasa/genética , Paraplejía Espástica Hereditaria/genética , Adulto , Animales , Humanos , Italia , Ratones , Ratones Noqueados , Persona de Mediana Edad , Mutación/genética , Linaje
15.
Hum Mol Genet ; 11(17): 1967-76, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12165558

RESUMEN

Kennedy's disease is a degenerative disease of motor neurons in which the causative mutation is expansion of a CAG/polyglutamine tract near the 5' end of the androgen receptor gene. The mutant protein misfolds, aggregates, and interacts abnormally with other proteins, leading to a novel, toxic gain of function and an alteration of normal function. We used a cell culture model to explore the mechanisms underlying the alterations in androgen receptor function conferred by the mutation. Here we show that cells expressing the wild-type androgen receptor with 24 CAG repeats respond to ligand by showing trophic effects including prolonged survival in low serum, whereas cells expressing the mutant receptor with 65 CAG repeats do not show a robust trophic response. This partial loss of function correlates with decreased levels of the mutant protein due to its preferential degradation by the ubiquitin-proteasome pathway. Expression analysis using oligonucleotide arrays confirms that the mutant receptor has undergone a partial loss of function, and fails to regulate a subset of genes whose expression is normally affected by ligand activation of the wild-type receptor. The mutant receptor has also undergone several functionally important post-translational modifications in the absence of ligand that the wild-type receptor undergoes in the presence of ligand, including acetylation and phosphorylation. These modifications correlate with a ligand-independent gain of function exhibited by the mutant receptor in expression analysis. Our findings suggest that polyglutamine expansion alters androgen receptor function by promoting its degradation and by modifying its activity as a transcription factor.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Péptidos/metabolismo , Receptores Androgénicos/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Ratones , Modelos Biológicos , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Mutagénesis Sitio-Dirigida , Análisis de Secuencia por Matrices de Oligonucleótidos , Péptido Hidrolasas/metabolismo , Péptidos/genética , Receptores Androgénicos/genética , Congéneres de la Testosterona/farmacología , Transcripción Genética , Expansión de Repetición de Trinucleótido/genética , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA