Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 600(7889): 456-461, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34912090

RESUMEN

Commercial chemicals are used extensively across urban centres worldwide1, posing a potential exposure risk to 4.2 billion people2. Harmful chemicals are often assessed on the basis of their environmental persistence, accumulation in biological organisms and toxic properties, under international and national initiatives such as the Stockholm Convention3. However, existing regulatory frameworks rely largely upon knowledge of the properties of the parent chemicals, with minimal consideration given to the products of their transformation in the atmosphere. This is mainly due to a dearth of experimental data, as identifying transformation products in complex mixtures of airborne chemicals is an immense analytical challenge4. Here we develop a new framework-combining laboratory and field experiments, advanced techniques for screening suspect chemicals, and in silico modelling-to assess the risks of airborne chemicals, while accounting for atmospheric chemical reactions. By applying this framework to organophosphate flame retardants, as representative chemicals of emerging concern5, we find that their transformation products are globally distributed across 18 megacities, representing a previously unrecognized exposure risk for the world's urban populations. More importantly, individual transformation products can be more toxic and up to an order-of-magnitude more persistent than the parent chemicals, such that the overall risks associated with the mixture of transformation products are also higher than those of the parent flame retardants. Together our results highlight the need to consider atmospheric transformations when assessing the risks of commercial chemicals.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Atmósfera/química , Monitoreo del Ambiente , Retardadores de Llama/efectos adversos , Sustancias Peligrosas/análisis , Internacionalidad , Organofosfatos/efectos adversos , Aire/análisis , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/envenenamiento , Animales , Bioacumulación , Ciudades/estadística & datos numéricos , Simulación por Computador , Ecosistema , Retardadores de Llama/análisis , Retardadores de Llama/envenenamiento , Sustancias Peligrosas/efectos adversos , Sustancias Peligrosas/química , Sustancias Peligrosas/envenenamiento , Humanos , Intoxicación por Organofosfatos , Organofosfatos/análisis , Organofosfatos/química , Medición de Riesgo
2.
Environ Sci Technol ; 57(34): 12806-12818, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590934

RESUMEN

We investigated the trophic magnification potential of perfluoroalkyl substances (PFAS) in a terrestrial food web by using a chemical activity-based approach, which involved normalizing concentrations of PFAS in biota to their relative biochemical composition in order to provide a thermodynamically accurate basis for comparing concentrations of PFAS in biota. Samples of hawk eggs, songbird tissues, and invertebrates were collected and analyzed for concentrations of 18 perfluoroalkyl acids (PFAAs) and for polar lipid, neutral lipid, total protein, albumin, and water content. Estimated mass fractions of PFCA C8-C11 and PFSA C4-C8 predominantly occurred in albumin within biota samples from the food web with smaller estimated fractions in polar lipids > structural proteins > neutral lipids and insignificant amounts in water. Estimated mass fractions of longer-chained PFAS (i.e., C12-C16) mainly occurred in polar lipids with smaller estimated fractions in albumin > structural proteins > neutral lipids > and water. Chemical activity-based TMFs indicated that PFNA, PFDA, PFUdA, PFDoA, PFTrDA, PFTeDA, PFOS, and PFDS biomagnified in the food web; PFOA, PFHxDA, and PFHxS did not appear to biomagnify; and PFBS biodiluted. Chemical activity-based TMFs for PFCA C8-C11 and PFSA C4-C8 were in good agreement with corresponding TMFs derived with concentrations normalized to only total protein in biota, suggesting that concentrations normalized to total protein may be appropriate proxies of chemical activity-based TMFs for PFAS, which predominantly partition to albumin. Similarly, TMFs derived with concentrations normalized to albumin may be suitable proxies of chemical activity-based TMFs for longer-chained PFAS, which predominantly partition to polar lipids.


Asunto(s)
Fluorocarburos , Cadena Alimentaria , Animales , Aves , Albúminas , Agua , Lípidos
3.
Environ Sci Technol ; 57(39): 14661-14673, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37732724

RESUMEN

Trace metals, as constituents of ambient air, can have impacts on human and environmental health. The Global Atmospheric Passive Sampling (GAPS) and GAPS Megacities (GAPS-MC) networks investigated trace metals in the air at 51 global locations by deploying polyurethane foam disk passive air samplers (PUF-PAS) for periods of 3-12 months. Aluminum and iron exhibited the highest concentrations in air (x̅ = 3400 and 4630 ng/m3, respectively), with notably elevated values at a rural site in Argentina thought to be impacted by resuspended soil. Urban sites had the highest levels of toxic Pb and Cd, with enrichment factors suggesting primarily anthropogenic influences. High levels of As at rural sites were also observed. Elevated trace metal concentrations in cities are associated with local emissions and higher PM2.5 and PM10 concentrations. Brake and tire wear-associated metals Sb, Cu, and Zn are significantly correlated and elevated at urban locations relative to those at background sites. These data demonstrate the versatility of PUF-PAS for measuring trace metals and other particle-associated pollutants in ambient air in a cost-effective and simple manner. The data presented here will serve as a global baseline for assessing future changes in ambient air associated with industrialization, urbanization, and population growth.

4.
Environ Sci Technol ; 56(5): 2936-2949, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35167273

RESUMEN

The Stockholm Convention is key to addressing the global threats of persistent organic pollutants (POPs) to humanity and the environment. It has been successful in identifying new POPs, but its national implementation remains challenging, particularly by low- and middle-income Parties. Concerted action is needed to assist Parties in implementing the Convention's obligations. This analysis aims to identify and recommend research and scientific support needed for timely implementation of the Convention. We aim this analysis at scientists and experts from a variety of natural and social sciences and from all sectors (academia, civil society, industry, and government institutions), as well as research funding agencies. Further, we provide practical guidance to scientists and experts to promote the visibility and accessibility of their work for the Convention's implementation, followed by recommendations for sustaining scientific support to the Convention. This study is the first of a series on analyzing policy needs for scientific evidence under global governance on chemicals and waste.


Asunto(s)
Contaminantes Ambientales , Contaminantes Ambientales/análisis , Políticas
5.
Environ Sci Technol ; 55(17): 11693-11702, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34431673

RESUMEN

This study provides guidance on using polyurethane foam-based passive air samplers (PUF-PASs) for atmospheric nonane chlorinated paraffins (C9-CPs) and short-chain CPs (SCCPs) and reports SCCP concentrations in air in the Greater Toronto Area (GTA), Canada. We estimated the partition coefficients between PUF and air (KPUF-A) and between octanol and air (KOA) for C9-CP and SCCP congeners using the COSMO-RS method, so that PUF disk uptake profiles for each formula group could be calculated. We then measured SCCP concentrations in PUF disk samples collected from distinct source sectors in urban air across the GTA. Concentrations in samplers were used to calculate C9-CP and SCCP concentrations in air and the PUF disk uptake profiles revealed that time-weighted linear phase sampling was possible for congeners having log KOA values greater than 8.5. The highest SCCP concentrations, with an annual average concentration of 35.3 ng/m3, were measured at the industrial site, whereas lower but comparable SCCP concentrations were found in residential and background sites, with annual averages of 7.73 and 10.5 ng/m3, respectively. No consistent seasonal variation in SCCP concentrations was found in the six distinct source sectors. Direct measurements of KPUF-A and KOA values as a function of temperature could be used to increase accuracy in future studies.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Clorados , Contaminantes Atmosféricos/análisis , Alcanos , China , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Parafina/análisis , Poliuretanos/análisis
6.
Environ Sci Technol ; 55(14): 9479-9488, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34213310

RESUMEN

The Global Atmospheric Passive Sampling (GAPS) network, initiated in 2005 across 55 global sites, supports the global monitoring plan (GMP) of the Stockholm Convention on Persistent Organic Pollutants (POPs) by providing information on POP concentrations in air on a global scale. These data inform assessments of the long-range transport potential of POPs and the effectiveness evaluation of chemical regulation efforts, by observing changes in concentrations over time. Currently, measurements spanning 5-10 sampling years are available for 40 sites from the GAPS Network. This study was the first time that POP concentrations in air were reported on a global scale for an extended time period and the first to evaluate worldwide trends with an internally consistent sample set. For consistency between sampling years, site- and sample specific sampling rates were calculated with a new, public online model, which accounts for the effects of wind speed variability. Concentrations for legacy POPs in air between 2005 and 2014 show different trends for different organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The POPs discussed in this study were chosen due to being the most frequently detected, with detection at the majority of sites. PCB, endosulfan, and hexachlorocyclohexane (HCH) concentrations in air are decreasing at most sites. The global trends reflect global sources and recycling of HCH, ongoing emissions from old stockpiles for PCBs, and recent use restrictions for endosulfan. These chlorinated OCPs continue to present exposure threat to humans and ecosystems worldwide. Concentrations of other OCPs, such as chlordanes, heptachlor and dieldrin, are steady and/or declining slowly at the majority of sites, reflecting a transition from primary to secondary sources (i.e., re-emission from reservoirs where these POPs have accumulated historically) which now control ambient air burdens.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Hidrocarburos Clorados , Plaguicidas , Bifenilos Policlorados , Contaminantes Atmosféricos/análisis , Ecosistema , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Humanos , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Bifenilos Policlorados/análisis
7.
Environ Sci Technol ; 55(20): 13932-13941, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34590828

RESUMEN

Trophic magnification of cyclic volatile methyl siloxanes (cVMS) in a terrestrial food web was investigated by measuring concentrations of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) and two reference chemicals within air and biota samples from an avian food web located in a mixed urban-agricultural landscape. Terrestrial trophic magnification factors derived from lipid normalized concentrations (TMFLs) for D5 and D6 were 0.94 (0.17 SE) and 1.1 (0.23 SE) and not statistically different from 1 (p > 0.05); however, the TMFL of D4 was 0.62 (0.11 SE) and statistically less than 1 (p < 0.001). TMFLs of PCB-153 and p,p'-DDE were 5.6 (2.2 SE) and 6.1 (2.8 SE) and statistically greater than 1 (p < 0.001). TMFLs of cVMS in this terrestrial system were similar to those reported in aquatic systems. However, trophic magnification factors derived on a fugacity basis (TMFFs), which recognize differences in body temperature and lipid composition between organisms, were greater than corresponding TMFLs primarily because a temperature-induced thermodynamic biomagnification of hydrophobic chemicals occurs when endothermic organisms consume poikilothermic organisms. Therefore, we recommend that biomagnification studies of food webs including endothermic and poikilothermic organisms incorporate differences in body temperature and tissue composition to accurately characterize the biomagnification potential of chemicals.


Asunto(s)
Cadena Alimentaria , Contaminantes Químicos del Agua , Bioacumulación , Temperatura Corporal , Monitoreo del Ambiente , Siloxanos/análisis , Temperatura , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Policy ; 125: 1-9, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34733112

RESUMEN

Polyurethane foam passive air samplers (PUF-PAS) are the most common type of passive air sampler used for a range of semi-volatile organic compounds (SVOCs), including regulated persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs), and emerging contaminants (e.g., novel flame retardants, phthalates, current-use pesticides). Data from PUF-PAS are key indicators of effectiveness of global regulatory actions on SVOCs, such as the Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants. While most PUF-PAS use similar double-dome metal shielding, there is no standardized dome size, shape, or deployment configuration, with many different PUF-PAS designs used in regional and global monitoring. Yet, no information is available on the comparability of data from studies using different PUF-PAS designs. We brought together 12 types of PUF-PAS used by different research groups around the world and deployed them in a multi-part intercomparison to evaluate the variability in reported concentrations introduced by different elements of PAS monitoring. PUF-PAS were deployed for 3 months in outdoor air in Kjeller, Norway in 2015-2016 in three phases to capture (1) the influence of sampler design on data comparability, (2) the influence of analytical variability when samplers are analyzed at different laboratories, and (3) the overall variability in global monitoring data introduced by differences in sampler configurations and analytical methods. Results indicate that while differences in sampler design (in particular, the spacing between the upper and lower sampler bowls) account for up to 50 % differences in masses collected by samplers, the variability introduced by analysis in different laboratories far exceeds this amount, resulting in differences spanning orders of magnitude for POPs and PAHs. The high level of variability due to analysis in different laboratories indicates that current SVOC air sampling data (i.e., not just for PUF-PAS but likely also for active air sampling) are not directly comparable between laboratories/monitoring programs. To support on-going efforts to mobilize more SVOC data to contribute to effectiveness evaluation, intercalibration exercises to account for uncertainties in air sampling, repeated at regular intervals, must be established to ensure analytical comparability and avoid biases in global-scale assessments of SVOCs in air caused by differences in laboratory performance.

9.
Environ Sci Technol ; 54(20): 12881-12889, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32924452

RESUMEN

A retrospective analysis of a comprehensive series of high-volume air samples (n = 70) collected during 2010-2011 in Toronto (Canada) was performed. Seven UV compounds were analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS) with sum of concentrations (gas + particle phase) ranging from 80 to 2030 pg/m3. Homosalate (HMS) was the most prevalent organic UV-filter in air (47% of the total concentration), followed by 2-ethylhexyl salicylate (EHS, ∼29%), E- and Z-2-ethylhexyl 4-methoxycinnamate (EHMC, ∼17%). Ambient air (gas + particle phase) concentrations of organic UV-filters showed a strong seasonality, with peak levels during the summer. An analysis of Clausius-Clapeyron slopes indicated that much of the ambient burden of organic UV-filters are explained by volatilization from terrestrial and aquatic surfaces and supplemented with human activities and use of lotions and sunscreens, containing organic UV-filters, in addition to its use in plastics, textiles, paints, and pesticides. The results showed that organic UV-filters exist mainly in the gas phase with some exceptions, for instance, octocrylene (OCR), which was associated with both gas and particle phases, and avobenzone (AVB), which was predominantly in the particle phase. Lastly, this study revealed the need for basic physical chemical property data for organic UV-filters, including information on transformation rates and products, for better evaluating their environmental fate and effects.


Asunto(s)
Protectores Solares , Espectrometría de Masas en Tándem , Canadá , Cromatografía de Gases y Espectrometría de Masas , Humanos , Estudios Retrospectivos , Protectores Solares/análisis
10.
Environ Sci Technol ; 53(24): 14398-14408, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31756294

RESUMEN

The environmental risks and health impacts associated with particulate organophosphate flame retardants (OPFRs), which are ubiquitous in the global atmosphere, have not been adequately assessed due to the lack of data on the reaction kinetics, products, and toxicity associated with their atmospheric transformations. Here, the importance of such transformations for OPFRs are explored by investigating the reaction kinetics, degradation chemical mechanisms, and toxicological evolution of two OPFRs (2-ethylhexyl diphenyl phosphate (EHDP) and diphenyl phosphate (DPhP)) coated on (NH4)2SO4 particles upon heterogeneous OH oxidation. The derived reaction rate constants for the heterogeneous loss of EHDP and DPhP are (1.12 ± 0.22) × 10-12 and (2.33 ± 0.14) × 10-12 cm3 molecules-1 s-1, respectively. Using recently developed real-time particle chemical composition measurements, particulate products from heterogeneous photooxidation and the associated degradation mechanisms for particulate OPFRs are reported for the first time. Subsequent cytotoxicity analysis of the unreacted and oxidized OPFR particles indicated that the overall particle cytotoxicity was reduced by up to 94% with heterogeneous photooxidation, likely due to a significantly lower cytotoxicity associated with the oxidized OPFR products relative to the parent OPFRs. The present work not only provides guidance for future field sampling for the detection of transformation products of OPFRs, but also strongly supports the ongoing risk assessment of these emerging chemicals and most critically, their products.


Asunto(s)
Retardadores de Llama , Polvo , Cinética , Organofosfatos , Oxidación-Reducción
11.
Environ Sci Technol ; 53(6): 2981-2989, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30741540

RESUMEN

Polycyclic aromatic compounds (PACs) can have multiple sources in the Athabasca Oil Sands Region (AOSR). The current study was designed to identify and explore the potential of nitrogen heterocyclic PACs (NPACs) as source indicators in snowpack, lake sediment and passive air samples from the AOSR during 2014-2015. Source samples including petroleum coke (petcoke), haul road dust, and unprocessed oil sands were also analyzed. Samples were analyzed using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry, and liquid chromatography-high resolution Orbitrap mass spectrometry. Over 200 NPACs were identified and classified into at least 24 isomer groups, including alkylated carbazoles, benzocarbazoles, and indenoquinolines. Levels of NPACs in environmental samples decreased with distance from the main developments and with increasing depth in lake sediments but were detected within 50 km from the major developments. The composition profiles of several NPAC isomer classes, such as dimethylcarbazoles, showed that petcoke had a distinct distribution of NPACs compared to the haul road dust and unprocessed oil sands ores and was the most similar source material to near-field environmental samples. These results suggest that petcoke is a major contributing source for the identified NPACs and that these compounds have the potential to be used as source indicators for future research in the AOSR.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Nieve , Alberta , Monitoreo del Ambiente , Nitrógeno , Yacimiento de Petróleo y Gas
12.
Environ Sci Technol ; 52(5): 2777-2789, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29406704

RESUMEN

Polyurethane foam (PUF) disk passive air samples, deployed during 2014 in the Global Atmospheric Passive Sampling (GAPS) Network, were analyzed for a range of flame retardants (FRs) including polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), brominated and chlorinated novel FRs, and organophosphate esters (OPEs). Mean concentrations of PBDEs and novel FRs at the 48 sites monitored ranged from 0.097 to 93 pg/m3 for Σ14PBDEs and from below detection limits to 126 pg/m3 for Σ15novel FRs. For PBDEs, the detected concentrations were similar to those previously reported from samples collected in 2005 at GAPS sites, suggesting global background atmospheric concentrations of PBDEs have not declined since regulatory measures were implemented. OPEs were detected at every GAPS site, with Σ18OPEs ranging from 69 to 7770 pg/m3. OPE concentrations were at least an order of magnitude higher than the PBDEs. This study presents the first data on global distributions of OPEs in the atmosphere, obtained from a single passive sampling monitoring network. Challenges that can arise in passive air sampling campaigns are also highlighted and addressed with suggested recommendations for future campaigns.


Asunto(s)
Retardadores de Llama , Monitoreo del Ambiente , Ésteres , Éteres Difenilos Halogenados , Organofosfatos
13.
Environ Sci Technol ; 52(21): 12456-12464, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30298729

RESUMEN

This study produced gridded deposition estimates of polycyclic aromatic compounds (PACs), including 17 polycyclic aromatic hydrocarbons (PAHs), 21 alkylated PAHs (alk-PAHs), and 5 dibenzothiophenes (DBTs), over the oil sands region of Alberta, Canada and surrounding communities. Gridded annual total deposition of PACs in 2011 ranged from 55 to 175 000 µg m-2 yr-1 and the mean and median fluxes were 1700 and 760 µg m-2 yr-1, respectively. The domain-wide mean dry and wet deposition were 600 and 1100 µg m-2 yr-1. PAHs, alk-PAHs and DBTs contributed 19%, 74%, and 7% to the total dry deposition, and 42%, 49%, and 9% to the total wet deposition. Dominant chemical species contributing to total deposition were naphthalene, retene and phenanthrene for PAHs and C2-benz[a]anthracene/triphenylene/chrysene, C2-fluoranthene/pyrene and C2-fluorene for alk-PAHs. The highest PAC deposition was found over the surface mineable area, which received 9 times the deposition flux of outlying areas. Additional deposition hotspots were also observed south of the surface mineable area notably over in situ bitumen production sites. The deposition of alk-PAHs impacted a more extensive area than that of PAHs or DBTs. This result suggests that atmospheric deposition is a key process in wildlife exposure to PACs across the region.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Compuestos Policíclicos , Alberta , Ecosistema , Monitoreo del Ambiente , Yacimiento de Petróleo y Gas
14.
Environ Sci Technol ; 52(13): 7240-7249, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29846065

RESUMEN

A special initiative was run by the Global Atmospheric Passive Sampling (GAPS) Network to provide atmospheric data on a range of emerging chemicals of concern and candidate and new persistent organic pollutants in the Group of Latin America and Caribbean (GRULAC) region. Regional-scale data for a range of flame retardants (FRs) including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and a range of alternative FRs (novel FRs) are reported over 2 years of sampling with low detection frequencies of the novel FRs. Atmospheric concentrations of the OPEs were an order of magnitude higher than all other FRs, with similar profiles at all sites. Regional-scale background concentrations of the poly- and perfluoroalkyl substances (PFAS), including the neutral PFAS (n-PFAS) and perfluoroalkyl acids (PFAAs), and the volatile methyl siloxanes (VMS) are also reported. Ethyl perfluorooctane sulfonamide (EtFOSA) was detected at highly elevated concentrations in Brazil and Colombia, in line with the use of the pesticide sulfluramid in this region. Similar concentrations of the perfluoroalkyl sulfonates (PFAS) were detected throughout the GRULAC region regardless of location type, and the VMS concentrations in air increased with the population density of sampling locations. This is the first report of atmospheric concentrations of the PFAAs and VMS from this region.


Asunto(s)
Contaminantes Ambientales , Retardadores de Llama , Brasil , Región del Caribe , Colombia , Monitoreo del Ambiente , Éteres Difenilos Halogenados , América Latina
15.
Environ Sci Technol ; 51(9): 5287-5295, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28402114

RESUMEN

This study highlights the potential of uptake into tree inner wood via direct-transfer through bark, as one contributing mechanism to describe atmospheric uptake of polycyclic aromatic compounds (PACs) into trees. The uptake of PACs into blue spruce tree wood was measured, with wood-air partition coefficients (KWOOD_AIR) determined for five PACs. A correlation between the octanol-air partition coefficient (KOA) and KWOOD_AIR for these five chemicals was determined and the KWOOD_AIR for 43 PACs were derived. A ratio of solubility (activity) difference between tree wood and octanol was also determined for these chemicals from this correlation. Finally, the derived KWOOD_AIR values were further applied to calculate an air volume sampled by the inner wood layer (cambium) of a tree during a one year growth (sampling) period. PACs with a log KWOOD_AIR > 6 remained in the linear sampling phase over one year of sampling. The results further highlight the important sink that forests provide for atmospheric organic chemicals which should be considered for emissions monitoring and impact assessments from destructive events such as forest fires or clear felling of forests.


Asunto(s)
Picea , Madera/química , Contaminantes Atmosféricos , Compuestos Policíclicos , Árboles/química
16.
Environ Sci Technol ; 51(10): 5445-5453, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28453248

RESUMEN

The aromatic fractions of snow, lake sediment, and air samples collected during 2011-2014 in the Athabasca oil sands region were analyzed using two-dimensional gas chromatography following a nontargeted approach. Commonly monitored aromatics (parent and alkylated-polycyclic aromatic hydrocarbons and dibenzothiophenes) were excluded from the analysis, focusing mainly on other heterocyclic aromatics. The unknowns detected were classified into isomeric groups and tentatively identified using mass spectral libraries. Relative concentrations of heterocyclic aromatics were estimated and were found to decrease with distance from a reference site near the center of the developments and with increasing depth of sediments. The same heterocyclic aromatics identified in snow, lake sediments, and air were observed in extracts of delayed petroleum coke, with similar distributions. This suggests that petroleum coke particles are a potential source of heterocyclic aromatics to the local environment, but other oil sands sources must also be considered. Although the signals of these heterocyclic aromatics diminished with distance, some were detected at large distances (>100 km) in snow and surface lake sediments, suggesting that the impact of industry can extend >50 km. The list of heterocyclic aromatics and the mass spectral library generated in this study can be used for future source apportionment studies.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos/análisis , Nieve/química , Contaminantes Químicos del Agua/análisis , Coque , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Yacimiento de Petróleo y Gas , Petróleo
17.
Environ Sci Technol ; 51(13): 7667-7675, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28535063

RESUMEN

Human exposure to persistent perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctanesulfonate (PFOS), can occur directly from contaminated food, water, air, and dust. However, precursors to PFAAs (PreFAAs), such as dipolyfluoroalkyl phosphates (diPAPs), fluorotelomer alcohols (FTOHs), perfluorooctyl sulfonamides (FOSAs), and sulfonamidoethanols (FOSEs), which can be biotransformed to PFAAs, may also be a source of exposure. PFAAs were analyzed in 50 maternal sera samples collected in 2007-2008 from participants in Vancouver, Canada, while PFAAs and PreFAAs were measured in matching samples of residential bedroom air collected by passive sampler and in sieved vacuum dust (<150 µm). Concentrations of PreFAAs were higher than for PFAAs in air and dust. Positive associations were discovered between airborne 10:2 FTOH and serum PFOA and PFNA and between airborne MeFOSE and serum PFOS. On average, serum PFOS concentrations were 2.3 ng/mL (95%CI: 0.40, 4.3) higher in participants with airborne MeFOSE concentrations in the highest tertile relative to the lowest tertile. Among all PFAAs, only PFNA in air and vacuum dust predicted serum PFNA. Results suggest that airborne PFAA precursors were a source of PFOA, PFNA, and PFOS exposure in this population.


Asunto(s)
Exposición a Riesgos Ambientales , Fluorocarburos/análisis , Adulto , Ácidos Alcanesulfónicos , Canadá , Caprilatos , Polvo , Femenino , Vivienda , Humanos , Embarazo
18.
Environ Sci Technol ; 50(20): 11282-11291, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27609612

RESUMEN

Extracts of passive air samples collected from 15 passive sampling network sites across the Athabasca Oil Sands region were used to explore the application of in vitro assays for mutagenicity (Salmonella mutation assays) and cytotoxicity (lactate dehydrogenase assay) to assess the toxicity of the air mixture. The air monitoring of polycyclic aromatic compounds (PACs) and PAC transformation products, including nitrated polycyclic aromatic hydrocarbons (NPAHs) and oxygenated polycyclic aromatic hydrocarbons (OPAHs) was then linked to the potential toxicity of air. The PACs in air during April to May 2014 were elevated near mining activities and declined with distance from the source region, whereas NPAHs and OPAHs exhibited a more variable spatial distribution with the highest levels in Fort McMurray. Overall, the air samples exhibited a weak mutagenicity. The highest indirect-acting mutagenicity was observed for sites closest to mining activities; however, the indirect-acting mutagenicity did not decline sharply with distance from mining areas. Indirect-acting mutagenicity was strongly correlated with levels of total PACs, benzo(a)pyrene equivalent mass, and OPAHs. Most of the samples exhibited cytotoxic potential, but the magnitude of the response was variable across the sample region and did not correlate with levels of target analytes. This indicates that PACs and PAC derivatives were not a major contributor to the cytotoxicity observed in the air samples.


Asunto(s)
Yacimiento de Petróleo y Gas , Compuestos Policíclicos/toxicidad , Atmósfera , Mutágenos , Hidrocarburos Policíclicos Aromáticos
19.
Environ Sci Technol ; 49(9): 5584-92, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25844542

RESUMEN

Polycyclic aromatic hydrocarbon (PAH) measurements were conducted by Wood Buffalo Environmental Association (WBEA) at four community ambient Air quality Monitoring Stations (AMS) in the Athabasca Oil Sands Region (AOSR) in Northeastern Alberta, Canada. The 2012 and 2013 mean concentrations of a subset of the 22 PAH species were 9.5, 8.4, 8.8, and 32 ng m(-3) at AMS 1 (Fort McKay), AMS 6 (residential Fort McMurray), AMS 7 (downtown Fort McMurray), and AMS 14 (Anzac), respectively. The average PAH concentrations in Fort McKay and Fort McMurray were in the range of rural and semirural areas, but peak values reflect an industrial emission influence. At these stations, PAHs were generally associated with NO, NO2, PM2.5, and SO2, indicating the emissions were from the combustion sources such as industrial stacks, vehicles, residential heating, and forest fires, whereas the PAH concentrations at AMS 14 (∼35 km south of Fort McMurray) were more characteristic of urban areas with a unique pattern: eight of the lower molecular weight PAHs exhibited strong seasonality with higher levels during the warmer months. Enthalpies calculated from Clausius-Clapeyron plots for these eight PAHs suggest that atmospheric emissions were dominated by temperature-dependent processes such as volatilization at warm temperatures. These findings point to the potential importance of localized water-air and/or surface-air transfer on observed PAH concentrations in air.


Asunto(s)
Contaminantes Atmosféricos/análisis , Yacimiento de Petróleo y Gas , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo/química , Alberta , Monitoreo del Ambiente , Incendios , Bosques , Tamaño de la Partícula , Material Particulado/análisis , Comunicaciones por Satélite , Estadísticas no Paramétricas , Temperatura , Factores de Tiempo , Emisiones de Vehículos/análisis , Volatilización
20.
Environ Sci Technol ; 49(5): 2991-8, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25602941

RESUMEN

Results are reported from an ongoing passive air monitoring study for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region in Alberta, Canada. Polyurethane foam (PUF) disk passive air samplers were deployed for consecutive 2-month periods from November 2010 to June 2012 at 17 sites. Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, dibenzothiophene and its alkylated derivatives (DBTs). Relative to parent PAHs, alkylated PAHs and DBTs are enriched in bitumen and therefore considered to be petrogenic markers. Concentrations in air were in the range 0.03-210 ng/m(3), 0.15-230 ng/m(3) and 0.01-61 ng/m(3) for ∑PAHs, ∑alkylated PAHs and ΣDBTs, respectively. An exponential decline of the PAC concentrations in air with distance from mining areas and related petrogenic sources was observed. The most significant exponential declines were for the alkylated PAHs and DBTs and attributed to their association with mining-related emissions and near-source deposition, due to their lower volatility and greater association with depositing particles. Seasonal trends in concentrations in air for PACs were not observed for any of the compound classes. However, a forest fire episode during April to July 2011 resulted in greatly elevated PAH levels at all passive sampling locations. Alkylated PAHs and DBTs were not elevated during the forest fire period, supporting their association with petrogenic sources. Based on the results of this study, an "Athabasca PAC profile" is proposed as a potential source marker for the oil sands region. The profile is characterized by ∑PAHs/∑Alkylated PAHs = ∼0.2 and ∑PAHs/∑DBTs = ∼5.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Yacimiento de Petróleo y Gas/química , Hidrocarburos Policíclicos Aromáticos/análisis , Alberta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA