Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 130(1): 90-96, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27026527

RESUMEN

Cell shedding from the intestinal villus is a key element of tissue turnover that is essential to maintain health and homeostasis. However, the signals regulating this process are not well understood. We asked whether shedding is controlled by epidermal growth factor receptor (EGFR), an important driver of intestinal growth and differentiation. In 3D ileal enteroid culture and cell culture models (MDCK, IEC-6 and IPEC-J2 cells), extrusion events were suppressed by EGF, as determined by direct counting of released cells or rhodamine-phalloidin labeling of condensed actin rings. Blockade of the MEK-ERK pathway, but not other downstream pathways such as phosphoinositide 3-kinase (PI3K) or protein kinase C (PKC), reversed EGF inhibition of shedding. These effects were not due to a change in cell viability. Furthermore, EGF-driven MAPK signaling inhibited both caspase-independent and -dependent shedding pathways. Similar results were found in vivo, in a novel zebrafish model for intestinal epithelial shedding. Taken together, the data show that EGF suppresses cell shedding in the intestinal epithelium through a selective MAPK-dependent pathway affecting multiple extrusion mechanisms. EGFR signaling might be a therapeutic target for disorders featuring excessive cell turnover, such as inflammatory bowel diseases.


Asunto(s)
Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/metabolismo , Intestinos/citología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Inhibidores de Caspasas/farmacología , Caspasas/metabolismo , Perros , Células Epiteliales/efectos de los fármacos , Células de Riñón Canino Madin Darby , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Pez Cebra , Proteínas de Unión al GTP rho/metabolismo
2.
iScience ; 23(7): 101336, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32683312

RESUMEN

The underlying health-driving mechanisms of Bifidobacterium during early life are not well understood, particularly how this microbiota member may modulate the intestinal barrier via programming of intestinal epithelial cells (IECs). We investigated the impact of Bifidobacterium breve UCC2003 on the transcriptome of neonatal murine IECs. Small IECs from two-week-old neonatal mice administered B. breve UCC2003 or PBS (control) were subjected to global RNA sequencing, and differentially expressed genes, pathways, and affected cell types were determined. We observed extensive regulation of the IEC transcriptome with ∼4,000 genes significantly up-regulated, including key genes linked with epithelial barrier function. Enrichment of cell differentiation pathways was observed, along with an overrepresentation of stem cell marker genes, indicating an increase in the regenerative potential of the epithelial layer. In conclusion, B. breve UCC2003 plays a central role in driving intestinal epithelium homeostatic development during early life and suggests future avenues for next-stage clinical studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA