Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Glia ; 72(4): 708-727, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180226

RESUMEN

Radial glia (RG) cells generate neurons and glial cells that make up the cerebral cortex. Both in rodents and humans, these stem cells remain for a specific time after birth, named late radial glia (lRG). The knowledge of lRG and molecules that may be involved in their differentiation is based on very limited data. We analyzed whether ascorbic acid (AA) and its transporter SVCT2, are involved in lRG cells differentiation. We demonstrated that lRG cells are highly present between the first and fourth postnatal days. Anatomical characterization of lRG cells, revealed that lRG cells maintained their bipolar morphology and stem-like character. When lRG cells were labeled with adenovirus-eGFP at 1 postnatal day, we detected that some cells display an obvious migratory neuronal phenotype, suggesting that lRG cells continue generating neurons postnatally. Moreover, we demonstrated that SVCT2 was apically polarized in lRG cells. In vitro studies using the transgenic mice SVCT2+/- and SVCT2tg (SVCT2-overexpressing mouse), showed that decreased SVCT2 levels led to accelerated differentiation into astrocytes, whereas both AA treatment and elevated SVCT2 expression maintain the lRG cells in an undifferentiated state. In vivo overexpression of SVCT2 in lRG cells generated cells with a rounded morphology that were migratory and positive for proliferation and neuronal markers. We also examined mediators that can be involved in AA/SVCT2-modulated signaling pathways, determining that GSK3-ß through AKT, mTORC2, and PDK1 is active in brains with high levels of SVCT2/AA. Our data provide new insights into the role of AA and SVCT2 in late RG cells.


Asunto(s)
Ácido Ascórbico , Transportadores de Sodio Acoplados a la Vitamina C , Animales , Humanos , Ratones , Ácido Ascórbico/farmacología , Células Ependimogliales/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones Transgénicos , Neuronas/metabolismo , Transportadores de Sodio Acoplados a la Vitamina C/genética
2.
Neurobiol Dis ; : 106602, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39004234

RESUMEN

Clinical studies have reported that increased epileptiform and subclinical epileptiform activity can be detected in many patients with an Alzheimer's disease (AD) diagnosis using electroencephalogram (EEG) and this may correlate with poorer cognition. Ascorbate may have a specific role as a neuromodulator in AD as it is released concomitantly with glutamate reuptake following excitatory neurotransmission. Insufficiency may therefore result in an exacerbated excitatory/inhibitory imbalance in neuronal signaling. Using a mouse model of AD that requires dietary ascorbate (Gulo-/-APPswe/PSEN1dE9), EEG was recorded at baseline and during 4 weeks of ascorbate depletion in young (5-month-old) and aged (20-month-old) animals. Data were scored for changes in quantity of spike trains, individual spikes, sleep-wake rhythms, sleep fragmentation, and brainwave power bands during light periods each week. We found an early increase in neuronal spike discharges with age and following ascorbate depletion in AD model mice and not controls, which did not correlate with brain amyloid load. Our data also show more sleep fragmentation with age and with ascorbate depletion. Additionally, changes in brain wave activity were observed within different vigilance states in both young and aged mice, where Gulo-/-APPswe/PSEN1dE9 mice had shifts towards higher frequency bands (alpha, beta, and gamma) and ascorbate depletion resulted in shifts towards lower frequency bands (delta and theta). Microarray data supported ascorbate insufficiency altering glutamatergic transmission through the decreased expression of glutamate related genes, however no changes in protein expression of glutamate reuptake transporters were observed. These data suggest that maintaining optimal brain ascorbate levels may support normal brain electrical activity and sleep patterns, particularly in AD patient populations where disruptions are observed.

3.
Brain Behav Immun ; 120: 557-570, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972487

RESUMEN

Neuroinflammation is a major characteristic of pathology in several neurodegenerative diseases. Microglia, the brain's resident myeloid cells, shift between activation states under neuroinflammatory conditions, both responding to, but also driving damage in the brain. Vitamin C (ascorbate) is an essential antioxidant for central nervous system function that may have a specific role in the neuroinflammatory response. Uptake of ascorbate throughout the central nervous system is facilitated by the sodium-dependent vitamin C transporter 2 (SVCT2). SVCT2 transports the reduced form of ascorbate into neurons and microglia, however the contribution of altered SVCT2 expression to the neuroinflammatory response in microglia is not well understood. In this study we demonstrate that SVCT2 expression modifies microglial response, as shown through changes in cell morphology and mRNA expression, following a mild traumatic brain injury (mTBI) in mice with decreased or increased expression of SVCT2. Results were supported by in vitro studies in an immortalized microglial cell line and in primary microglial cultures derived from SVCT2-heterozygous and transgenic animals. Overall, this work demonstrates the importance of SVCT2 and ascorbate in modulating the microglial response to mTBI and suggests a potential role for both in response to neuroinflammatory challenges.

4.
Brain Behav Immun ; 116: 370-384, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141840

RESUMEN

Neuroinflammation and microglial iron load are significant hallmarks found in several neurodegenerative diseases. In in vitro systems, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and it has been shown that iron can augment cellular inflammation, suggesting a feed-forward loop between mechanisms involved in iron import and inflammatory signaling. However, it is not understood how microglial iron import mechanisms contribute to inflammation in vivo, or whether altering a microglial iron-related gene affects the inflammatory response. These studies aimed to determine the effect of knocking down microglial iron import gene Slc11a2 on the inflammatory response in vivo. We generated a novel model of tamoxifen-inducible, microglial-specific Slc11a2 knockdown using Cx3cr1Cre-ERT2 mice. Transgenic male and female mice were administered intraperitoneal saline or lipopolysaccharide (LPS) and assessed for sickness behavior post-injection. Plasma cytokines and microglial bulk RNA sequencing (RNASeq) analyses were performed at 4 h post-LPS, and microglia were collected for gene expression analysis after 24 h. A subset of mice was assessed in a behavioral test battery following LPS-induced sickness recovery. Control male, but not female, mice significantly upregulated microglial Slc11a2 at 4 and 24 h following LPS. In Slc11a2 knockdown mice, we observed an improvement in the acute behavioral sickness response post-LPS in male, but not female, animals. Microglia from male, but not female, knockdown animals exhibited a significant decrease in LPS-provoked pro-inflammatory cytokine expression after 24 h. RNASeq data from male knockdown microglia 4 h post-LPS revealed a robust downregulation in inflammatory genes including Il6, Tnfα, and Il1ß, and an increase in anti-inflammatory and homeostatic markers (e.g., Tgfbr1, Cx3cr1, and Trem2). This corresponded with a profound decrease in plasma pro-inflammatory cytokines 4 h post-LPS. At 4 h, male knockdown microglia also upregulated expression of markers of iron export, iron recycling, and iron homeostasis and decreased iron storage and import genes, along with pro-oxidant markers such as Cybb, Nos2, and Hif1α. Overall, this work elucidates how manipulating a specific gene involved in iron import in microglia alters acute inflammatory signaling and overall cell activation state in male mice. These data highlight a sex-specific link between a microglial iron import gene and the pro-inflammatory response to LPS in vivo, providing further insight into the mechanisms driving neuroinflammatory disease.


Asunto(s)
Lipopolisacáridos , Microglía , Animales , Femenino , Masculino , Ratones , Citocinas/metabolismo , Inflamación/metabolismo , Hierro/metabolismo , Lipopolisacáridos/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Receptores Inmunológicos/metabolismo
5.
Br J Cancer ; 129(2): 356-365, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37225893

RESUMEN

BACKGROUND: Risk-stratified screening is being considered for national breast screening programmes. It is unclear how women experience risk-stratified screening and receipt of breast cancer risk information in real time. This study aimed to explore the psychological impact of undergoing risk-stratified screening within England's NHS Breast Screening Programme. METHODS: Individual telephone interviews were conducted with 40 women who participated in the BC-Predict study and received a letter indicating their estimated breast cancer risk as one of four risk categories: low (<2% 10-year risk), average (2-4.99%), above average (moderate; 5-7.99%) or high (≥8%). Audio-recorded interview transcriptions were analysed using reflexive thematic analysis. RESULTS: Two themes were produced: 'From risk expectations to what's my future health story?' highlights that women overall valued the opportunity to receive risk estimates; however, when these were discordant with perceived risk, this causes temporary distress or rejection of the information. 'Being a good (woman) citizen' where women felt positive contributing to society but may feel judged if they then cannot exert agency over the management of their risk or access follow-up support CONCLUSIONS: Risk-stratified breast screening was generally accepted without causing long-lasting distress; however, issues related to risk communication and access to care pathways need to be considered for implementation.


Asunto(s)
Neoplasias de la Mama , Detección Precoz del Cáncer , Humanos , Femenino , Neoplasias de la Mama/psicología , Tamizaje Masivo , Investigación Cualitativa , Medicina Estatal , Inglaterra , Medición de Riesgo , Persona de Mediana Edad , Anciano
6.
Br J Cancer ; 128(8): 1548-1558, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36774447

RESUMEN

BACKGROUND: Adding risk stratification to standard screening via the NHS Breast Screening Programme (NHSBSP) allows women at higher risk to be offered additional prevention and screening options. It may, however, introduce new harms such as increasing cancer worry. The present study aimed to assess whether there were differences in self-reported harms and benefits between women offered risk stratification (BC-Predict) compared to women offered standard NHSBSP, controlling for baseline values. METHODS: As part of the larger PROCAS2 study (NCT04359420), 5901 women were offered standard NHSBSP or BC-Predict at the invitation to NHSBSP. Women who took up BC-Predict received 10-year risk estimates: "high" (≥8%), "above average (moderate)" (5-7.99%), "average" (2-4.99%) or "below average (low)" (<2%) risk. A subset of 662 women completed questionnaires at baseline and at 3 months (n = 511) and 6 months (n = 473). RESULTS: State anxiety and cancer worry scores were low with no differences between women offered BC-Predict or NHSBSP. Women offered BC-Predict and informed of being at higher risk reported higher risk perceptions and cancer worry than other women, but without reaching clinical levels. CONCLUSIONS: Concerns that risk-stratified screening will produce harm due to increases in general anxiety or cancer worry are unfounded, even for women informed that they are at high risk.


Asunto(s)
Neoplasias de la Mama , Medicina Estatal , Femenino , Humanos , Ansiedad/prevención & control , Mama , Neoplasias de la Mama/diagnóstico , Mamografía , Tamizaje Masivo , Autoinforme , Encuestas y Cuestionarios
7.
Br J Cancer ; 128(11): 2063-2071, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37005486

RESUMEN

BACKGROUND: Risk stratification as a routine part of the NHS Breast Screening Programme (NHSBSP) could provide a better balance of benefits and harms. We developed BC-Predict, to offer women when invited to the NHSBSP, which collects standard risk factor information; mammographic density; and in a sub-sample, a Polygenic Risk Score (PRS). METHODS: Risk prediction was estimated primarily from self-reported questionnaires and mammographic density using the Tyrer-Cuzick risk model. Women eligible for NHSBSP were recruited. BC-Predict produced risk feedback letters, inviting women at high risk (≥8% 10-year) or moderate risk (≥5-<8% 10-year) to have appointments to discuss prevention and additional screening. RESULTS: Overall uptake of BC-Predict in screening attendees was 16.9% with 2472 consenting to the study; 76.8% of those received risk feedback within the 8-week timeframe. Recruitment was 63.2% with an onsite recruiter and paper questionnaire compared to <10% with BC-Predict only (P < 0.0001). Risk appointment attendance was highest for those at high risk (40.6%); 77.5% of those opted for preventive medication. DISCUSSION: We have shown that a real-time offer of breast cancer risk information (including both mammographic density and PRS) is feasible and can be delivered in reasonable time, although uptake requires personal contact. Preventive medication uptake in women newly identified at high risk is high and could improve the cost-effectiveness of risk stratification. TRIAL REGISTRATION: Retrospectively registered with clinicaltrials.gov (NCT04359420).


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico , Mamografía , Detección Precoz del Cáncer , Densidad de la Mama , Factores de Riesgo
8.
Brain Behav Immun ; 107: 165-178, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243287

RESUMEN

Sepsis and systemic inflammation are often accompanied by severe encephalopathy, sleep disruption and delirium that strongly correlate with poor clinical outcomes including long-term cognitive deficits. The cardinal manifestations of delirium are fluctuating altered mental status and inattention, identified in critically ill patients by interactive bedside assessment. The lack of analogous assessments in mouse models or clear biomarkers is a challenge to preclinical studies of delirium. In this study, we utilized concurrent measures of telemetric EEG recordings and neurobehavioral tasks in mice to characterize inattention and persistent cognitive deficits following polymicrobial sepsis. During the 24-hour critical illness period for the mice, slow-wave EEG dominance, sleep disruption, and hypersensitivity to auditory stimuli in neurobehavioral tasks resembled clinical observations in delirious patients in which alterations in similar outcome measurements, although measured differently in mice and humans, are reported. Mice were tested for nest building ability 7 days after sepsis induction, when sickness behaviors and spontaneous activity had returned to baseline. Animals that showed persistent deficits determined by poor nest building at 7 days also exhibited molecular changes in hippocampal long-term potentiation compared to mice that returned to baseline cognitive performance. Together, these behavioral and electrophysiological biomarkers offer a robust mouse model with which to further probe molecular pathways underlying brain and behavioral changes during and after acute illness such as sepsis.


Asunto(s)
Potenciación a Largo Plazo , Humanos , Ratones , Animales
9.
Nature ; 543(7643): 83-86, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28252065

RESUMEN

The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different scales: the X-ray emission from within a few gravitational radii of the black hole ionizing the disk wind hundreds of gravitational radii further away as the X-ray flux rises.

10.
Neurochem Res ; 47(1): 37-60, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33830406

RESUMEN

The serotonin (5-HT) transporter (SERT) is a key regulator of 5-HT signaling and is a major target for antidepressants and psychostimulants. Human SERT coding variants have been identified in subjects with obsessive-compulsive disorder (OCD) and autism spectrum disorder (ASD) that impact transporter phosphorylation, cell surface trafficking and/or conformational dynamics. Prior to an initial description of a novel mouse line expressing the non-phosphorylatable SERT substitution Thr276Ala, we review efforts made to elucidate the structure and conformational dynamics of SERT with a focus on research implicating phosphorylation at Thr276 as a determinant of SERT conformational dynamics. Using the high-resolution structure of human SERT in inward- and outward-open conformations, we explore the conformation dependence of SERT Thr276 exposure, with results suggesting that phosphorylation is likely restricted to an inward-open conformation, consistent with prior biochemical studies. Assessment of genotypes from SERT/Ala276 heterozygous matings revealed a deviation from Mendelian expectations, with reduced numbers of Ala276 offspring, though no genotype differences were seen in growth or physical appearance. Similarly, no genotype differences were evident in midbrain or hippocampal 5-HT levels, midbrain and hippocampal SERT mRNA or midbrain protein levels, nor in midbrain synaptosomal 5-HT uptake kinetics. Behaviorally, SERT Ala276 homozygotes appeared normal in measures of anxiety and antidepressant-sensitive stress coping behavior. However, these mice displayed sex-dependent alterations in repetitive and social interactions, consistent with circuit-dependent requirements for Thr276 phosphorylation underlying these behaviors. Our findings indicate the utility of SERT Ala276 mice in evaluation of developmental, functional and behavioral consequences of regulatory SERT phosphorylation in vivo.


Asunto(s)
Trastorno del Espectro Autista , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Trastorno del Espectro Autista/genética , Humanos , Mesencéfalo/metabolismo , Ratones , Fosforilación , Serotonina/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo
11.
J Proteome Res ; 20(9): 4405-4414, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34382806

RESUMEN

Recent research regarding amino acid metabolism has shown that there may be a link between obesity and Alzheimer's disease (AD). This work reports a metabolomics study using targeted and untargeted mass spectrometry-based metabolomic strategies to investigate this link. Targeted hydrophilic interaction liquid chromatography-triple quadrupole mass spectrometry and untargeted reversed-phase liquid chromatography-high resolution tandem mass spectrometry assays were developed to analyze the metabolic changes that occur in AD and obesity. APPSwe/PS1ΔE9 (APP/PSEN1) transgenic mice (to represent familial or early-onset AD) and wild-type littermate controls were fed either a high-fat diet (HFD, 60% kcal from lard) or a low-fat diet (LFD, 10% kcal from lard) from 2 months of age or a reversal diet (HFD, followed by LFD from 9.5 months). For targeted analyses, we applied the guidelines outlined in the Clinical and Laboratory Standards Institute (CLSI) LC-MS C62-A document and the U.S. Food and Drug Administration (FDA) bioanalytical method validation guidance for industry to evaluate the figures of merit of the assays. Our targeted and untargeted metabolomics results suggest that numerous peripheral pathways, specifically amino acid metabolism and fatty acid metabolism, were significantly affected by AD and diet. Multiple amino acids (including alanine, glutamic acid, leucine, isoleucine, and phenylalanine), carnitines, and members of the fatty acid oxidation pathway were significantly increased in APP/PSEN1 mice on HFD compared to those on LFD. More substantial effects and changes were observed in the APP/PSEN1 mice than in the WT mice, suggesting that they were more sensitive to an HFD. These dysregulated peripheral pathways include numerous amino acid pathways and fatty acid beta oxidation and suggest that obesity combined with AD further enhances cognitive impairment, possibly through aggravated mitochondrial dysfunction. Furthermore, partial reversibility of many altered pathways was observed, which highlights that diet change can mitigate the metabolic effects of AD. The same trends in individual amino acids were observed in both strategies, highlighting the biological validity of the results.


Asunto(s)
Enfermedad de Alzheimer , Aminoácidos , Animales , Dieta Alta en Grasa/efectos adversos , Espectrometría de Masas , Metabolómica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
12.
J Biol Chem ; 295(19): 6312-6329, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32188696

RESUMEN

Manganese (Mn) is an essential micronutrient required for the normal development of many organs, including the brain. Although its roles as a cofactor in several enzymes and in maintaining optimal physiology are well-known, the overall biological functions of Mn are rather poorly understood. Alterations in body Mn status are associated with altered neuronal physiology and cognition in humans, and either overexposure or (more rarely) insufficiency can cause neurological dysfunction. The resultant balancing act can be viewed as a hormetic U-shaped relationship for biological Mn status and optimal brain health, with changes in the brain leading to physiological effects throughout the body and vice versa. This review discusses Mn homeostasis, biomarkers, molecular mechanisms of cellular transport, and neuropathological changes associated with disruptions of Mn homeostasis, especially in its excess, and identifies gaps in our understanding of the molecular and biochemical mechanisms underlying Mn homeostasis and neurotoxicity.


Asunto(s)
Encéfalo/metabolismo , Cognición , Homeostasis , Manganeso , Neuronas/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Animales , Encéfalo/patología , Humanos , Manganeso/metabolismo , Manganeso/toxicidad , Neuronas/patología
13.
J Neurochem ; 157(3): 656-665, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32797675

RESUMEN

Dopamine (DA) has important roles in learning, memory, and motivational processes and is highly susceptible to oxidation. In addition to dementia, Alzheimer's disease (AD) patients frequently exhibit decreased motivation, anhedonia, and sleep disorders, suggesting deficits in dopaminergic neurotransmission. Vitamin C (ascorbate, ASC) is a critical antioxidant in the brain and is often depleted in AD patients as a result of disease-related oxidative stress and dietary deficiencies. To probe the effects of ASC deficiency and AD pathology on the DAergic system, gulo-/- mice, which like humans depend on dietary ASC to maintain adequate tissue levels, were crossed with APP/PSEN1 mice and provided sufficient or depleted ASC supplementation from weaning until 12 months of age. Ex vivo fast-scan cyclic voltammetry showed that chronic ASC depletion and APP/PSEN1 genotype both independently decreased dopamine release in the nucleus accumbens, a hub for motivational behavior and reward, while DA clearance was similar across all groups. In striatal tissue containing nucleus accumbens, low ASC treatment led to decreased levels of DA and its metabolites 3,4-dihydroxyohenyl-acetic acid (DOPAC), 3-methoxytyramine (3-MT), and homovanillic acid (HVA). Decreased enzyme activity observed through lower pTH/TH ratio was driven by a cumulative effect of ASC depletion and APP/PSEN1 genotype. Together the data show that deficits in dopaminergic neurotransmission resulting from age and disease status are magnified in conditions of low ASC which decrease DA availability during synaptic transmission. Such deficits may contribute to the non-cognitive behavioral changes observed in AD including decreased motivation, anhedonia, and sleep disorders.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Presenilina-1/genética , Deficiencia de Vitamina B/metabolismo , Envejecimiento/metabolismo , Animales , Ácido Ascórbico/farmacología , Dopamina/metabolismo , Genotipo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Motivación/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
14.
Nature ; 520(7549): 646-9, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25925477

RESUMEN

The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10 kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre.

15.
BMC Cancer ; 20(1): 570, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32552763

RESUMEN

BACKGROUND: In principle, risk-stratification as a routine part of the NHS Breast Screening Programme (NHSBSP) should produce a better balance of benefits and harms. The main benefit is the offer of NICE-approved more frequent screening and/ or chemoprevention for women who are at increased risk, but are unaware of this. We have developed BC-Predict, to be offered to women when invited to NHSBSP which collects information on risk factors (self-reported information on family history and hormone-related factors via questionnaire; mammographic density; and in a sub-sample, Single Nucleotide Polymorphisms). BC-Predict produces risk feedback letters, inviting women at high risk (≥8% 10-year) or moderate risk (≥5 to < 8% 10-year) to have discussion of prevention and early detection options at Family History, Risk and Prevention Clinics. Despite the promise of systems such as BC-Predict, there are still too many uncertainties for a fully-powered definitive trial to be appropriate or ethical. The present research aims to identify these key uncertainties regarding the feasibility of integrating BC-Predict into the NHSBSP. Key objectives of the present research are to quantify important potential benefits and harms, and identify key drivers of the relative cost-effectiveness of embedding BC-Predict into NHSBSP. METHODS: A non-randomised fully counterbalanced study design will be used, to include approximately equal numbers of women offered NHSBSP (n = 18,700) and BC-Predict (n = 18,700) from selected screening sites (n = 7). In the initial 8-month time period, women eligible for NHSBSP will be offered BC-Predict in four screening sites. Three screening sites will offer women usual NHSBSP. In the following 8-months the study sites offering usual NHSBSP switch to BC-Predict and vice versa. Key potential benefits including uptake of risk consultations, chemoprevention and additional screening will be obtained for both groups. Key potential harms such as increased anxiety will be obtained via self-report questionnaires, with embedded qualitative process analysis. A decision-analytic model-based cost-effectiveness analysis will identify the key uncertainties underpinning the relative cost-effectiveness of embedding BC-Predict into NHSBSP. DISCUSSION: We will assess the feasibility of integrating BC-Predict into the NHSBSP, and identify the main uncertainties for a definitive evaluation of the clinical and cost-effectiveness of BC-Predict. TRIAL REGISTRATION: Retrospectively registered with clinicaltrials.gov (NCT04359420).


Asunto(s)
Ansiedad/diagnóstico , Neoplasias de la Mama/prevención & control , Análisis Costo-Beneficio , Detección Precoz del Cáncer/métodos , Tamizaje Masivo/métodos , Adolescente , Adulto , Ansiedad/epidemiología , Ansiedad/etiología , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/economía , Neoplasias de la Mama/epidemiología , Niño , Ensayos Clínicos como Asunto , Detección Precoz del Cáncer/economía , Detección Precoz del Cáncer/psicología , Estudios de Factibilidad , Femenino , Implementación de Plan de Salud/economía , Implementación de Plan de Salud/organización & administración , Humanos , Tamizaje Masivo/economía , Tamizaje Masivo/organización & administración , Tamizaje Masivo/psicología , Anamnesis , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Evaluación de Programas y Proyectos de Salud , Medición de Riesgo/economía , Medición de Riesgo/métodos , Autoinforme/estadística & datos numéricos , Medicina Estatal/economía , Medicina Estatal/organización & administración , Reino Unido/epidemiología , Adulto Joven
16.
Am J Physiol Renal Physiol ; 317(4): F922-F929, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31364379

RESUMEN

Acute kidney injury is a common complication of severe sepsis and contributes to high mortality. The molecular mechanisms of acute kidney injury during sepsis are not fully understood. Because hemoproteins, including myoglobin and hemoglobin, are known to mediate kidney injury during rhabdomyolysis, we hypothesized that cell-free hemoglobin (CFH) would exacerbate acute kidney injury during sepsis. Sepsis was induced in mice by intraperitoneal injection of cecal slurry (CS). To mimic elevated levels of CFH observed during human sepsis, mice also received a retroorbital injection of CFH or dextrose control. Four groups of mice were analyzed: sham treated (sham), CFH alone, CS alone, and CS + CFH. The addition of CFH to CS reduced 48-h survival compared with CS alone (67% vs. 97%, P = 0.001) and increased the severity of illness. After 24 and 48 h, CS + CFH mice had a reduced glomerular filtration rate from baseline, whereas sham, CFH, and CS mice maintained baseline glomerular filtration rate. Biomarkers of acute kidney injury, neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1), were markedly elevated in CS+CFH compared with CS (8-fold for NGAL and 2.4-fold for KIM-1, P < 0.002 for each) after 48 h. Histological examination showed a trend toward increased tubular injury in CS + CFH-exposed kidneys compared with CS-exposed kidneys. However, there were similar levels of renal oxidative injury and apoptosis in the CS + CFH group compared with the CS group. Kidney levels of multiple proinflammatory cytokines were similar between CS and CS + CFH groups. Human renal tubule cells (HK-2) exposed to CFH demonstrated increased cytotoxicity. Together, these results show that CFH exacerbates acute kidney injury in a mouse model of experimental sepsis, potentially through increased renal tubular injury.


Asunto(s)
Lesión Renal Aguda/patología , Hemoglobinas/toxicidad , Sepsis/patología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/fisiopatología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Sistema Libre de Células , Citocinas/metabolismo , Femenino , Tasa de Filtración Glomerular , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Túbulos Renales/metabolismo , Túbulos Renales/patología , Lipocalina 2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Sepsis/complicaciones , Análisis de Supervivencia
17.
Neurobiol Learn Mem ; 165: 107087, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31499164

RESUMEN

Intellectual and developmental disabilities (IDDs) are a common group of disorders that frequently share overlapping symptoms, including cognitive deficits, altered attention, seizures, impaired social interactions, and anxiety. The causes of these disorders are varied ranging from early prenatal/postnatal insults to genetic variants that either cause or are associated with an increased likelihood of an IDD. As many of the symptoms observed in individuals with IDDs are a manifestation of altered nervous system function resulting in altered behaviors, it should not be surprising that the field is very dependent upon in vivo model systems. This special issue of Neurobiology of Learning and Memory is focused on the methods and approaches that are being used to model and understand these disorders in mammals. While surveys by the Pew Foundation continue to find a high degree of confidence/trust in scientists by the public, several recent studies have documented issues with reproducibility in scientific publications. This special issue includes both primary research articles and review articles in which careful attention has been made to transparently report methods and use rigorous approaches to ensure reproducibility. Although there have been and will continue to be remarkable advances for treatment of subset of IDDs, it is clear that this field is still in its early stages. There is no doubt that the strategies being used to model IDDs will continue to evolve. We hope this special issue will support this evolution so that we can maintain the trust of the public and elected officials, and continue developing evidence-based approaches to new therapeutics.


Asunto(s)
Discapacidades del Desarrollo/psicología , Modelos Animales de Enfermedad , Discapacidad Intelectual/psicología , Animales , Discapacidades del Desarrollo/etiología , Humanos , Discapacidad Intelectual/etiología
19.
BMC Public Health ; 18(1): 178, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370783

RESUMEN

BACKGROUND: The differences between breast cancer risk factors in white British/Irish and Asian women attending screening in the UK are not well documented. METHODS: Between 2009-15 ethnicity and traditional breast cancer risk factors were self-identified by a screening cohort from Greater Manchester, with follow up to 2016. Risk factors and incidence rates were compared using age-standardised statistics (European standard population). RESULTS: Eight hundred and seventy-nine Asian women and 51,779 unaffected white British/Irish women aged 46-73 years were recruited. Asian women were at lower predicted breast cancer risk from hormonal and reproductive risk factors than white British/Irish women (mean 10 year risk 2.6% vs 3.1%, difference 0.4%, 95%CI 0.3-0.5%). White British/Irish women were more likely to have had a younger age at menarche, be overweight or obese, taller, used hormone replacement therapy and not to have had children.. However, despite being less overweight Asian women had gained more weight from age 20 years and were less likely to undertake moderate physical activity. Asian women also had a slightly higher mammographic density. Asian age-standardised incidence was 3.2 (95%CI 1.6-5.2, 18 cancers) per thousand women/year vs 4.5 (95%CI 4.2-4.8, 1076 cancers) for white British/Irish women. CONCLUSIONS: Asian women attending screening in Greater Manchester are likely to have a lower risk of breast cancer than white British/Irish women, but they undertake less physical activity and have more adult weight gain.


Asunto(s)
Pueblo Asiatico/estadística & datos numéricos , Neoplasias de la Mama/etnología , Detección Precoz del Cáncer/estadística & datos numéricos , Población Blanca/estadística & datos numéricos , Anciano , Neoplasias de la Mama/diagnóstico , Estudios de Cohortes , Femenino , Humanos , Persona de Mediana Edad , Factores de Riesgo , Reino Unido/epidemiología
20.
Neurobiol Dis ; 100: 87-98, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28108292

RESUMEN

This study assessed the extent to which high fat diet (HFD)-induced ß-amyloid accumulation and cognitive decline in APP/PSEN1 mice are reversible through control of fat intake. Ten months of HFD (60% calories from fat) led to significant deficits in a 2-trial Y maze task, and nest building assay, and decreased voluntary locomotor activity. The HFD induced an inflammatory response, indicated by increased expression of several inflammatory markers. Substituting a low fat diet led to pronounced weight loss and correction of glucose intolerance, decreases in the inflammatory response, and improved performance on behavioral tasks in both wild-type and APP/PSEN1 transgenic mice. Insoluble ß-amyloid levels, and extent of tau phosphorylation were also lower following dietary reversal in APP/PSEN1 mice compared to high fat-fed animals, indicating that the inflammatory response may have contributed to key pathogenic pathways in the Alzheimer's disease model. The data suggest that weight loss can be a vital strategy for cognitive protection, but also highlight potential mechanisms for intervention when sustained weight loss is not possible.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/complicaciones , Dieta Alta en Grasa , Glucosa/metabolismo , Obesidad/complicaciones , Presenilina-1/metabolismo , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Trastornos de la Memoria/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA